Yield potential of super sweet corn genotypes in progressive breeding stages

Keywords: heterosis; partial diallel; plant breeding; intervarietal hybrids; shrunken; single-cross.

Abstract

This study aimed to present the advancements in different breeding stages of super sweet corn (SS), from heterotic field corn populations to the single-cross of SS. Two parental field corn populations, four backcrossed SS populations, four SS intervarietal hybrids (SS-IH), eighteen SS single hybrids (SS-SCH) and two controls were evaluated in two environments over two crop years. The SS-IH and SS-SCH categories presented the highest ear yield, and SS-SCH presented the highest ear yield without husk (11.3 t ha-1). Although SS-SCH was the most productive category, it presented the lowest husk coverage quality. The ear yield and husk cover traits expressed the highest heterosis based on the midparents. The hybrid genotype categories (SS-SCH, SS-IH and controls) had the greatest ear length and diameter, as well as plant and ear height. It was possible to conclude that the techniques used to exploit heterosis are efficient in increasing SS yield but not husk coverage, since this trait requires productive parents. Single-crosses, such as LCSH-116 x LP8HS-129 and LCSH-116 x LP8HS-130, stood out as promising genotypes for registration since they recorded high husk coverage yield and quality.

Downloads

Download data is not yet available.

References

Berilli, A. P. C. G., Pereira, M. G., Gonçalves, L. S. A., Cunha, K. S., Ramos, H. C. C., Souza Filho, G. A., & Amaral Júnior, A. T. d. (2011). Use of molecular markers in reciprocal recurrent selection of maize increases heterosis effects. Genetics and Molecular Research, 10(4), 2589-2596. DOI: 10.4238/2011.October.25.6

Camilo, J. S., Barbieri, V. H. B., Rangel, R. M., Bonnas, D. S., Luz, J. M. Q., & Oliveira, R. C. (2015). Aceitação sensorial de híbridos de milho doce e híbridos de milho verde em intervalos de colheita. Revista Ceres, 62(1), 1-8. DOI: 10.1590/0034-737X201562010001

Cassman, K. G., Dobermann, A., Walters, D. T., & Yang, H. (2003). Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources, 28(1), 315-358. DOI: 10.1146/annurev.energy.28.040202.122858

Dhoot, M., Dubey, R. B., Ameta, K. D., Dhoot, R., Kumar, R., & Badaya, V. K. (2017). Estimation of heterosis for grain yield and architectural traits in yellow seeded maize (Zea mays L.). International Journal of Current Microbiology and Applied Sciences, 6(7), 4536-4542. DOI: 10.20546/IJCMAS.2017.607.473

Durães, N. N. L., Crevelari, J. A., Vettorazzi, J. C. F., Junior, J. A. F., Santana, F. A., & Pereira, M. G. (2017). Combining ability for traits associated with yield and quality in super sweet corn (Zea mays L. saccharata). Australian Journal of Crop Science, 11(09), 1188-1194. DOI: 10.21475/ajcs.17.11.09.pne538

Duvick, D. N. (2005). Genetic progress in yield of Untied States maize (Zea mays L.). Maydica, 50(3), 193-202.

Giraud, H., Bauland, C., Falque, M., Madur, D., Combes, V., Jamin, P., … Moreau, L. (2017). Reciprocal genetics: Identifying QTL for general and specific combining abilities in hybrids between multiparental populations from two maize (Zea mays L.) heterotic groups. Genetics, 207(3), 1167-1180. DOI: 10.1534/genetics.117.300305

Gonçalves, G. M. B., Pereira, M. G., Ferreira Junior, J. A., Schwantes, I. A., Durães, N. N. L., Crevelari, J. A., & Amaral Júnior, A. T. (2018). Development and selection of super-sweet corn genotypes (sh2) through multivariate approaches. Bragantia, 77(4), 536-545. DOI: 10.1590/1678-4499.2017340

Guan, Y. J., Hu, J., Wang, Z. F., Zhu, S. J., Wang, J. C., & Knapp, A. (2013). Time series regression analysis between changes in kernel size and seed vigor during developmental stage of sh2 sweet corn (Zea mays L.) seeds. Scientia Horticulturae, 154, 25–30. DOI: 10.1016/j.scienta.2013.02.016

Hallauer, A. R., Carena, M. J., & Miranda Filho, J. B. (2010). Quantitative genetics in maize breeding (3rd ed.). Ames, US: Springer-Verlag New York. DOI: 10.1007/978-1-4419-0766-0

Ilker, E. (2011). Correlation and path coefficient analyses in sweet corn. Turkish Journal of Field Crops, 16(2), 105-107.

Larièpe, A., Mangin, B., Jasson, S., Combes, V., Dumas, F., Jamin, P., … Moreau, L. (2012). The genetic basis of heterosis: Multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics, 190(2), 795–811. DOI: 10.1534/genetics.111.133447

Li, Z., Coffey, L., Garfin, J., Miller, N. D., White, M. R., Spalding, E. P., ... Hirsch, C. N. (2018). Genotype-by-environment interactions affecting heterosis in maize. PLoS ONE, 13(1), e0191321. DOI: 10.1371/journal.pone.0191321

McMillian, W. W., Widstrom, N. W., & Wilson, D. M. (1987). Impact of husk type and species of infesting insects on aflatoxin contamination in preharvest corn at TIFTON, Georgia. Journal of Entomological Science, 22(4), 307-310. DOI: 10.18474/0749-8004-22.4.307

Mezmouk, S., & Ross-Ibarra, J. (2014). The pattern and distribution of deleterious mutations in maize. G3: Genes, Genomes, Genetics, 4(1), 163-171. DOI: 10.1534/g3.113.008870

Okumura, R. S., Mariano, D. C., Franco, A. A. N., Zaccheo, P. V. C., & Zorzenoni, T. O. (2013). Sweet corn: Genetic aspects, agronomic and nutritional traits. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, 6(1), 105-114. DOI: 10.5935/PAeT.V6.N1.13

Olivoto, T., Nardino, M., Carvalho, I. R., Follmann, D. N., Ferrari, M., Szareski, V. J., … Souza, V. Q. (2017). REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits. Genetics and Molecular Research, 16(1), 1-19. DOI: 10.4238/GMR16019525

Pavlov, J., Delic, N., Markovic, K., Crevar, M., Camdzija, Z., & Stevanovic, M. (2015). Path analysis for morphological traits in maize (Zea mays L.). Genetika, 47(1), 295–301. DOI: 10.2298/GENSR1501295P

SAS Institute Inc. (2018). SAS® University edition quick start guide for students with visual impairments. Cary, NC: SAS Institute Inc.

Sharma, H. P., Dhakal, K. H., Kharel, R., & Shrestha, J. (2016). Estimation of heterosis in yield and yield attributing traits in single cross hybrids of maize. Journal of Maize Research and Development, 2(1), 123-132. DOI: 10.3126/jmrd.v2i1.16223

Shull, G. H. (1909). A pure-line method in corn breeding. Journal of Heredity, 5(1), 51-58. DOI: 10.1093/jhered/os-5.1.51

Tembo, L., Asea, G., Gibson, P. T., & Okori, P. (2016). Indirect selection for resistance to Stenocarpella maydis and Fusarium graminearum and the prospects of selecting for high-yielding and resistant maize hybrids. Plant Breeding, 135(4), 446-451. DOI: 10.1111/pbr.12378

Tracy, W. (2001). Specialty corn (2nd ed.). In A. R. Hallauer (Ed.), Specialty corns (p. 162–204). Boca Raton, FL: CRC Press. DOI: 10.2135/cropsci2001.1990

Wallace, J. G., Larsson, S. J., & Buckler, E. S. (2014). Entering the second century of maize quantitative genetics. Heredity, 112(1), 30-38. DOI: 10.1038/hdy.2013.6

Williams, M. M. (2014). Few crop traits accurately predict variables important to productivity of processing sweet corn. Field Crops Research, 157, 20-26. DOI: 10.1016/j.fcr.2013.12.003

Published
2020-05-27
How to Cite
Gonçalves, G. M. B., Ferreira Júnior, J. A., Durães, N. N. L., Crevelari, J. A., Viana, F. N., & Pereira, M. G. (2020). Yield potential of super sweet corn genotypes in progressive breeding stages. Acta Scientiarum. Agronomy, 42(1), e43789. https://doi.org/10.4025/actasciagron.v42i1.43789
Section
Genetics and Plant Breeding

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus