Training systems, rootstocks and climatic conditions influence quality and antioxidant activity of ‘BRS Cora’ grape

Palavras-chave: hybrid grapes; phenolic compounds; principal component analysis; production system; tropical vitiviniculture.

Resumo

Environmental and production factors might affect grapevine physiology. Estimating these effects is essential for planning the harvest and predicting the quality of grapes. The aim of this study was to characterize the quality and antioxidant potential of ‘BRS Cora’ grapes with different training systems and rootstocks in production cycles of the second half of the year under tropical conditions. The experimental design was randomized blocks with sub-subdivided plots over time. Three training systems and two rootstocks were studied in production cycles referring to the second halves of 2017 and 2018. In 2017, the grapes of plants trained with lyre and vertical shoot positioning (VSP) had the highest soluble solids and sugars contents, and in 2018, this response occurred with the overhead trellis system. There was lower variation in titratable acidity between cycles of grapevines trained with VSP and lyre, as well as in those grafted onto ‘IAC 572’. In 2018, lyre with ‘IAC 572’ promoted higher pigment accumulation. Climatic conditions in 2017 provided a higher accumulation of polyphenols and antioxidant activity in grapes of plants trained with lyre with ‘IAC 766’. The efficiency of the training system within each cycle, associated with the effect of the rootstock, resulted in differentiated responses according to climatic conditions.

Downloads

Não há dados estatísticos.

Referências

Angelotti-Mendonça, J., Moura, M. F., Filho, J. A. S., Vedoato, B. T. F., & Tecchio, M. A. (2018). Rootstock on production and quality of 'Niagara Rosada' grapevine. Revista Brasileira de Fruticultura, 40(4), 1-9. DOI: 10.1590/0100-29452018023

Association of Official Analytical Chemists [AOAC]. (2010). Official methods of analysis of the AOAC International (18. ed.). Gaithersburg, MD: AOAC International.

Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 5(35), 27540-27557. DOI: 10.1039/C5RA01911G

Camm, E. L., & Towers, G. H. N. (1973). Phenyalanine ammonia lyase. Phytochemistry, 12(5), 961-973. DOI: 10.1016/0031-9422(73)85001-0

Carbonell-Bejerano, P., Diago, M. P., Martínez-Abaigar, J., Martínez-Zapater, J. M., Tardáguila, J., & Núñez-Olivera, E. (2014). Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biology, 14(183) 1-16. DOI: 10.1186/1471-2229-14-183

Creasy, G. L., & Creasy, L. L. (2009). Grapes (Crop Production Science in Horticulture). London, UK: CABI.

Dinis, L. T., Bernardo, S., Condea, A., Pimentel, D., Ferreira, H., Félix, L., ... Moutinho-Pereira, J. (2016). Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. Journal of Plant Physiology, 191(1), 45-53. DOI: 10.1016/j.jplph.2015.12.005

Downey, M. O., Dokoozlian, N. K., & Krstic, M. P. (2006). Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. American Journal of Enology and Viticulture, 57(1), 257-268.

Embrapa Semiárido. (2015). Anuual averages of the Agrometeorological Station of Bebedouro. Petrolina, PE: Embrapa Semiárido. Retrieved on Sep. 10, 2018 from http://www.cpatsa. embrapa.br:8080/ servicos/dadosmet/ceb-anual.html

Embrapa Semiárido. (2018). Anuual averages of the Agrometeorological Station of Bebedouro. Petrolina, PE: Embrapa Semiárido. Retrieved on Nov. 10, 2018 from http://www.cpatsa. embrapa.br:8080/ servicos/dadosmet/ceb-anual.html

Etienne, A., Genard, M., Lobit, P., Mbeguie-a-Mbeguie, D., & Bugaud, C. (2013). What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 64(6) 1451-1469. DOI: 10.1093/jxb/ert035

Francis, F. J. (1982). Analysis of anthocyanins. In P. Markakis (Ed.), Anthocyanins as food colors (p. 181-207). New York, US: Academic Press.

Greer, D. H., & Weedon, M. M. (2012). Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard. Plant Physiology and Biochemistry, 54(1), 59-69. DOI: 10.1016/j.plaphy.2012.02.010

Kyraleou, M., Kallithraka, S., Koundouras, S., Chira, K., Haroutounian, S., Spinthiropoulou, H., & Kotseridis, Y. (2015). Effect of vine training system on the phenolic composition of red grapes (Vitis vinifera L. cv. Xinomavro). OENO One, 49(1), 71-84. DOI: 10.20870/oeno-one.2015.49.2.92

Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stabilitity of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agriculture and Food Chemistry, 45(4), 1390-1393. DOI: 10.1021/jf960282f

Leão, P. C. S., Nunes, B. T. G., & Lima, M. A. C. (2016). Canopy management effects on ‘Syrah’ grapevines under tropical semi-arid conditions. Scientia Agricola, 73(3), 209-216. DOI: 10.1590/0103-9016-2014-0408

Leão, P. C. S., Rego, J. I. S., Nascimento, J. H. B., & Souza, E. M. C. (2018). Yield and physicochemical characteristics of ‘BRS Magna’ and ‘Isabel Precoce’ grapes influenced by pruning in the São Francisco river valley. Ciência Rural, 48(6), 1-6. DOI: 10.1590/0103-8478cr20170463

Martínez-Lüscher, J., Sánchez-Días, M., Delrot, S., Aguirreolea, J., Pascual, I., & Gomès, E. (2016). Ultraviolet-B alleviates the uncoupling effect of elevated CO2 and increased temperature on grape berry (Vitis vinifera cv. Tempranillo) anthocyanin and sugar accumulation. Australian Journal of Grape and Wine Research, 22(1), 87-95. DOI: 10.1111/ajgw.12213

Miller, N. J., Diplock, A. T., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84(4), 407-412. DOI: 10.1042/cs0840407

Oliveira, A. F., Mercenaro, L., Del Caro, A., Pretti, L., & Nieddu, G. (2015). Distinctive anthocyanin accumulation responses to temperature and natural UV radiation of two field-grown (Vitis vinifera L.) cultivars. Molecules, 20(2), 2061-2080. DOI: 10.3390/molecules20022061

Pedro Júnior, M. J., Hernandes, J. L., & Moura, M. F. (2018). Performance of juice and wine grape cultivars in different training systems. Revista Brasileira de Fruticultura, 40(6), 1-8. DOI: 10.1590/0100-29452018055

Ribeiro, T. P., Lima, M. A. C., & Alves, R. E. (2012). Maturação e qualidade de uvas para suco em condições tropicais, nos primeiros ciclos de produção. Pesquisa Agropecuária Brasileira, 47(8), 1057-1065. DOI: 10.1590/S0100-204X2012000800005

Rufino, M. S. M., Alves, R. E., Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996-1002. DOI: 10.1016/j.foodchem.2010.01.037

Sánchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270-276. DOI: 10.1002/(sici)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9

Silva, M. J. R., Paiva, A. P. M., Pimentel Junior, A., Sánchez, C. A. P. C., Callili, D., Moura, M. F., ... Tecchio, M. A. (2018). Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. Scientia Horticulturae, 241(1), 194-200. DOI: 10.1016/j.scienta.2018.06.085

Soares, J. M., & Leão, P. C. S. (2009). Winemaking in the Brazilian Semiarid. Petrolina, PE: Embrapa Informação Tecnológica.

Teixeira, A., Eiras-Dias, J., Castellarin, S. D., & Geros, H. (2013). Berry phenolics of grapevine under challenging environments. International Journal of Molecular Sciences, 14(9), 18711-18739. DOI: 10.3390/ijms140918711

Vogt, T., Pollak, P., Taryln, N., & Taylor, L. P. (1994). Pollination- or wound-induced kaempferol accumulation in petunia stigmas enhances seed production. Plant Cell, 6(1), 11-23. DOI: 10.1105/tpc.6.1.11

Wang, J. F., Ma, L., Xi, H. F., Wang, L. J., & Li, S. H. (2015). Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in ‘Beihong’ (V. vinifera x V. amurensis). Food Chemistry, 168(1), 430-438. DOI: 10.1016/j.foodchem.2014.07.025

Yemn, E. W., & Willis, A. J. (1954). The estimation of carbohydrate in plant extracts by anthrone. The Biochemical Journal, 57(3), 504-514. DOI: 10.1042/bj0570508

Publicado
2020-11-05
Como Citar
Costa, R. R. da, Ferreira, T. de O., & Lima, M. A. C. de. (2020). Training systems, rootstocks and climatic conditions influence quality and antioxidant activity of ‘BRS Cora’ grape. Acta Scientiarum. Agronomy, 43(1), e49054. https://doi.org/10.4025/actasciagron.v43i1.49054
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus