Foliar application of potassium nitrate induces tolerance to water deficit in pre-flowering sorghum plants
Abstract
The objective of this study was to evaluate the the ability of foliar application of potassium nitrate (KNO3) to induce water deficit tolerance in sorghum plants (Sorghum bicolor cv. P898012) subjected to water deficit at pre-flowering. The experiment was conducted under greenhouse conditions with 4 treatments: field capacity (FC), water deficit (WD), field capacity + KNO3 (FC + KNO3), and water deficit + KNO3 (WD + KNO3). Two foliar applications of 3% (m/v) KNO3 were made, the first on day zero of stress and the second on the fifth day. All analyses were performed after 12 days of stress (end of stress). Foliar application of KNO3 to irrigated plants led to increases in relative chlorophyll content, photosynthetic rate, stomatal conductance, transpiration, and carboxylation efficiency. It also induced increases in leaf concentrations of P, Mg, S, Cu, and Fe, in addition to height growth. Under water deficit conditions, plants treated with KNO3 presented higher relative chlorophyll content, leaf area, photosynthetic rate, stomatal conductance, transpiration, carboxylation efficiency, and higher levels of P, K, Mg, S, Cu, and Fe than those not treated with KNO3. The morphometry of the root system was not altered by the treatments. In addition, plants treated with KNO3 under water deficit conditions showed higher growth and a grain yield 32.2% higher than those that did not receive KNO3. These results demonstrated that KNO3 applied to the leaves induced water deficit tolerance in sorghum plants subjected to severe water stress at pre-flowering.
Downloads
References
Avila, R. G., Magalhães, P. C., Alvarenga, A. A., Lavinsky, A. O., Campos, C. N., Gomes Júnior, C. C., & Souza, T. C. (2016). Drought-tolerant maize genotypes invest in root system and maintain high harvest index during water stress. Revista Brasileira de Milho e Sorgo, 15(3), 450-460. DOI: https://doi.org/10.18512/1980-6477/rbms.v15n3p450-460
Avila, R. G., Magalhães, P. C., Silva, E. M., Gomes Júnior, C. C., Lana, U. G. P., Alvarenga, A. A., & Souza, T. C. (2019). Silicon supplementation improves tolerance to water deficiency in sorghum plants by increasing root system growth and improving photosynthesis. Silicon, 12, 2545-2554. DOI: https://doi.org/10.1007/s12633-019-00349-5
Bahrami-Rad, S., & Hajiboland, R. (2017). Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: comparison of root with foliar application. Annals of Agricultural Sciences, 62(2), 121-130. DOI: https://doi.org/10.1016/j.aoas.2017.08.001
Borrell, A. K., Mullet, J. E., George-Jaeggli, B., van Oosterom, E. J., Hammer, G. L., Klein, P. E., & Jordan, D. R. (2014). Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany, 65(21), 6251-6263. DOI: https://doi.org/10.1093/jxb/eru232
Burke, J. J., Chen, J., Burow, G., Mechref, Y., Rosenow, D., Payton, P. R., … Hayes, C. M. (2013). Leaf dhurrin content is a quantitative measure of the level of pre- and postflowering drought tolerance in sorghum. Crop Science, 53(3), 1056-1065. DOI: https://doi.org/10.2135/cropsci2012.09.0520
Carelli, M. L. C., Fahl, J. I., & Ramalho, J. D. C. (2006). Aspects of nitrogen metabolism in coffee plants. Brazilian Journal of Plant Physiology, 18(1), 9-21. DOI: https://doi.org/10.1590/S1677-04202006000100002
Chen, Y., & Barak, P. (1982). Iron nutrition of plants in calcareous soils. Advances in Agronomy, 35, 217-240. DOI: https://doi.org/10.1016/S0065-2113(08)60326-0
Elhag, K. M., & Zhang, W. (2018). Monitoring and assessment of drought focused on its impact on sorghum yield over sudan by using meteorological drought indices for the period 2001-2011. Remote Sensing, 10(8), 1231. DOI: https://doi.org/10.3390/rs10081231
Emendack, Y., Burke, J., Sanchez, J., Laza, H. E., & Hayes, C. (2018). Agro-morphological characterization of diverse sorghum lines for pre-and post-flowering drought tolerance. Australian Journal of Crop Science, 12(1), 135-150. DOI: https://doi.org/10.21475/ajcs.18.12.01.pne790
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. DOI: https://doi.org/10.1007/978-90-481-2666-8_12
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337-342. DOI: https://doi.org/10.1038/nature10452
Garg, B. K. (2003). Nutrient uptake and management under drought: nutrient-moisture interaction. Current Agriculture, 27(1-2), 1-8.
Gimeno, V., Díaz-López, L., Simón-Grao, S., Martínez, V., Martínez-Nicolás, J. J., & García-Sánchez, F. (2014). Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. Plant Physiology and Biochemistry, 83, 308-315. DOI: https://doi.org/10.1016/j.plaphy.2014.08.008
Grossman, A., & Takahashi, H. (2001). Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 163-210. DOI: https://doi.org/10.1146/annurev.arplant.52.1.163
Guo, Y. Y., Tian, S. S., Liu, S. S., Wang, W. Q., & Sui, N. (2018). Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica, 56(3), 861-872. DOI: https://doi.org/10.1007/s11099-017-0741-0
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., … Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38, 102. DOI: https://doi.org/10.1007/s11738-016-2113-y
Khammari, I., Galavi, M., Ghanbari, A., Solouki, M., & Poorchaman, M. R. A. (2012). The effect of drought stress and nitrogen levels on antioxidant enzymes, proline and yield of Indian Senna (Cassia angustifolia L.). Journal of Medicinal Plants Research, 6(11), 2125-2130. DOI: https://doi.org/10.5897/jmpr11.1105
Lavinsky, A. O., Magalhães, P. C., Ávila, R. G., Diniz, M. M., & Souza, T. C. (2015). Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity. The Crop Journal, 3(5), 379-386. DOI: https://doi.org/10.1016/j.cj.2015.04.008
Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275-294. DOI: https://doi.org/10.1046/j.0016-8025.2001.00814.x
Liu, C., Wang, Y., Pan, K., Jin, Y., Li, W., & Zhang, L. (2015). Effects of phosphorus application on photosynthetic carbon and nitrogen metabolism, water use efficiency and growth of dwarf bamboo (Fargesia rufa) subjected to water deficit. Plant Physiology and Biochemistry, 96, 20-28. DOI: https://doi.org/10.1016/j.plaphy.2015.07.018
Liu, G., Freschet, G. T., Pan, X., Cornelissen, J. H. C., Li, Y., & Dong, M. (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 188(2), 543-553. DOI: https://doi.org/10.1111/j.1469-8137.2010.03388.x
Magalhães, P. C., Souza, T. C., & Cantão, F. R. O. (2011). Early evaluation of root morphology of maize genotypes under phosphorus deficiency. Plant, Soil and Environment, 57(3), 135-138. DOI: https://doi.org/10.17221/360/2010-PSE
Maurel, C., Verdoucq, L., & Rodrigues, O. (2016). Aquaporins and plant transpiration. Plant, Cell & Environment, 39(11), 2580-2587. DOI: https://doi.org/10.1111/pce.12814
Mirkovic, T., Ostroumov, E. E., Anna, J. M., Van Grondelle, R., Govindjee, & Scholes, G. D. (2017). Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chemical Reviews, 117(2), 249-293. DOI: https://doi.org/10.1021/acs.chemrev.6b00002
Pennisi, E. (2009). How sorghum withstands heat and drought. Science, 323(5914), 573. DOI: https://doi.org/10.1126/science.323.5914.573
Peterson, T. A., Blackmer, T. M., Francis, D. D., & Schepers, J. S. (1993). Using a chlorophyll meter to improve N management. Lincoln, NE: Institute of Agriculture and Natural Resources.
Reis, C. O., Magalhães, P. C., Avila, R. G., Almeida, L. G., Rabelo, V. M., Carvalho, D. T., … Souza, T. C. (2018). Action of N-Succinyl and N,O-Dicarboxymethyl chitosan derivatives on chlorophyll photosynthesis and fluorescence in drought-sensitive maize. Journal of Plant Growth Regulation, 38,
-630. DOI: https://doi.org/10.1007/s00344-018-9877-9
Rissler, H. M., Collakova, E., DellaPenna, D., Whelan, J., & Pogson, B. J. (2002). Chlorophyll biosynthesis. Expression of a second chl i gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiology, 128(2), 770-779. DOI: https://doi.org/10.1104/pp.010625
Saud, S., Fahad, S., Yajun, C., Ihsan, M. Z., Hammad, H. M., Nasim, W., … Alharby, H. (2017). Effects of nitrogen supply on water stress and recovery mechanisms in kentucky bluegrass plants. Frontiers in Plant Science, 8, 893. DOI: https://doi.org/10.3389/fpls.2017.00983
Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes (2a ed.). Brasília, DF: Embrapa Solos.
Souza, T. C., Castro, E. M., Magalhães, P. C., Lino, L. O., Alves, E. T., & Albuquerque, P. E. P. (2013). Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. Acta Physiologiae Plantarum, 35(11), 3201-3211. DOI: https://doi.org/10.1007/s11738-013-1355-1
Souza, T. C., Magalhães, P. C., Castro, E. M., Carneiro, N. P., Padilha, F. A., & Gomes Júnior, C. C. (2014). ABA application to maize hybrids contrasting for drought tolerance: Changes in water parameters and in antioxidant enzyme activity. Plant Growth Regulation, 73(3), 205-217. DOI: https://doi.org/10.1007/s10725-013-9881-9
Ul-Allah, S., Ijaz, M., Nawaz, A., Sattar, A., Sher, A., Naeem, M., ... Mahmood, K. (2020). Potassium application improves grain yield and alleviates drought susceptibility in diverse maize hybrids. Plants, 9(1), 75. DOI: https://doi.org/10.3390/plants9010075
Vigani, G., & Briat, J.-F. (2016). Impairment of respiratory chain under nutrient deficiency in plants: does it play a role in the regulation of iron and sulfur responsive genes? Frontiers in Plant Science, 6, 1185. DOI: https://doi.org/10.3389/fpls.2015.01185
Wang, X., Mohamed, I., Ali, M., Abbas, M. H. H., Shah, G. M., & Chen, F. (2019). Potassium distribution in root and non-root zones of two cotton genotypes and its accumulation in their organs as affected by drought and potassium stress conditions. Journal of Plant Nutrition and Soil Science, 182(1), 72-81. DOI: https://doi.org/10.1002/jpln.201800026
White, P. J. (2001). The pathways of calcium movement to the xylem. Journal of Experimental Botany, 52(358), 891-899. DOI: https://doi.org/10.1093/jexbot/52.358.891
Zhong, C., Cao, X., Hu, J., Zhu, L., Zhang, J., Huang, J., & Jin, Q. (2017). Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Frontiers in Plant Science, 8, 1079. DOI: https://doi.org/10.3389/fpls.2017.01079
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.