Shade induces contrasting light photosynthetic performance between Signal and Guinea Grasses

  • Diogo de Paula Lima Instituto Nacional de Colonização e Reforma Agrária
  • Felipe Della Torre Universidade Federal de Minas Gerais
  • Áurea Rodrigues Cordeiro Universidade Federal de Minas Gerais
  • Maria Rita Scotti Universidade Federal de Minas Gerais
  • Marcel Giovanni Costa França Universidade Federal de Minas Gerais
Keywords: C4 grasses; pastures systems; photoinhibition; shade.

Abstract

Signal grass (Urochloa decumbens) and guinea grass (Megathyrsus maximus) are African grasses that are well established in the Brazilian Savannah and we tested their adaptation to different light intensity. Plants were grown for 45 days under 0% shade (full sun) and 25, 40, and 80% induced shade to evaluate their photosynthetic performance. Light curves showed higher values of electron transport rate, photochemical quenching, and effective quantum yield in plants subjected to 0 and 25% shade for signal grass and in 25 and 40% shade for guinea grass. The potential quantum yield evaluations revealed that signal grass felt the effects of excessive light around 11:30 am on plants subjected to 0 and 25% shade. Conversely, guinea grass showed these photoinhibition effects at the same shade level but in a longer time range (9:30 am to 1:30 pm). As shade increased, there was a reduction tendency of the pigment content in signal grass and the opposite was observed for guinea grass. Stomatal conductance showed different values during the day and among different shade levels and there were no differences in relative water content between treatments and species. Results indicated better photosynthetic performance for signal grass under high intensity and better photosynthetic performance for guinea grass subjected to intermediate and higher levels of shade. Altogether, the results indicate that guinea grass seems to be a more appropriate choice for silvopasture systems.

Downloads

Download data is not yet available.

References

Baig, M. J., Anand, A., Mandal, P. K., & Bhatt, R. K. (2005). Irradiance influences contents of photosynthetic pigments and proteins in tropical grasses and legumes. Photosynthetica, 43(1), 47-53. DOI: https://doi.org/10.1007/s11099-005-7053-5

Bernardino, F. S., & Garcia, R. (2009). Sistemas silvipastoris. Pesquisa Florestal Brasileira, 60, 77-87. DOI: https://doi.org/10.4336/2009.pfb.60.77

Bertamini, M., Muthuchelian, K., & Nedunchezhian, N. (2006). Shade effect alters leaf pigments and photosynthetic responses in Norway spruce (Picea abies L.) grown under field conditions. Photosynthetica, 44(2), 227-234. DOI: https://doi.org/10.1007/s11099-006-0011-z

Bilger, W., Schreiber, U., & Bock, M. (1995). Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia, 102(4), 425-432. DOI: https://doi.org/10.1007/BF00341354

Bjorkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170(4), 489-504. DOI: https://doi.org/10.1007/BF00402983

Bruck, S. R., Bishaw, B., Cushing, T. L., & Cubbage, F. W. (2019). Modeling the financial potential of silvopasture agroforestry in eastern North Carolina and Northeastern Oregon. Journal of Forestry, 117(1), 13-20. DOI: https://doi.org/10.1093/jofore/fvy065

Castro, C. R. T., Garcia, R., Carvalho, M. M., & Couto, L. (1999). Grass forages production cultivated under light reduction. Revista Brasileira de Zootecnia, 28(5), 919-927. DOI: https://doi.org/10.1590/S1516-35981999000500003

Deinum, B., Sulastri, R. D., Zeinab, M. H. J., & Maassen, A. (1996). Effects of light intensity on growth, anatomy and forage quality of two tropical grasses (Brachiaria brizantha and Panicum maximum var. trichoglume). Wageningen Journal of Life Sciences, 44(2), 111-124. DOI: https://doi.org/10.18174/njas.v44i2.551

Demmig-Adams, B., & Adams III, W. W. (2006). Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist, 172(1), 11-21. DOI: https://doi.org/10.1111/j.1469-8137.2006.01835.x

East, R. M., & Felker, P. (1993). Forage production and quality of 4 perennial grasses grown under and outside canopies of mature Prosopis glandulosa Torr. var. glandulosa (mesquite). Agroforestry Systems, 22(2), 91-110. DOI: https://doi.org/10.1007/BF00705139

Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. DOI: https://doi.org/10.1016/S0304-4165(89)80016-9

Hanelt, D. (2018). Photosynthesis assessed by chlorophyll fluorescence. In D. Häder, & G. S. Erzinger (Eds.), Bioassays advanced methods and applications (p. 169-198). Amsterdam, NL: Elsevier.

He, J., Chee, C. W., & Goh, C. J. (1996). ‘Photoinhibition’ of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature. Plant, Cell & Environment, 19(11), 1238-1248. DOI: https://doi.org/10.1111/j.1365-3040.1996.tb00002.x

Horton, J. L., Fortner, R., & Goklany, M. (2010). Photosynthetic characteristics of the C4 invasive exotic grass Miscanthus sinensis Andersson growing along gradients of light intensity in the southeastern United States. Castanea, 75(1), 52-66.

Jank, L., Barrios, S. C., Valle, C. B., Simeão, R. M., & Alves, G. F. (2014). The value of improved pastures to Brazilian beef production. Crop and Pasture Science, 65(11), 1132-1137. DOI: https://doi.org/10.1071/CP13319

Jiang, Y., Duncan, R. R., & Carrow, R. N. (2004). Assessment of low light tolerance of seashore paspalum and bermudagrass. Crop Science, 44(2), 587-594. DOI: https://doi.org/10.2135/CROPSCI2004.5870

Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., … Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(102), 1-11. DOI: https://doi.org/10.1007/s11738-016-2113-y

Kalaji, M. H., Goltsev, V. N., Zuk-Gołaszewska, K., Zivcak, M., & Brestic, M. (2017). Chlorophyll fluorescence: Understanding crop performance – basics and applications. Boca Raton, FL: CRC Press.

Kluge, R. A., Tezotto-Uliana, J. V., & Silva, P. P. M. (2015). Aspectos fisiológicos e ambientais da fotossíntese. Revista Virtual de Química, 7(1), 56-73. DOI: https://doi.org/10.5935/1984-6835.20150004

Krause, G. H., Winter, K., Matsubara, S., Krause, B., Jahns, P., Virgo, A., ... García, M. (2012). Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. Photosynthesis Research, 113(1-3), 273-285. DOI: https://doi.org/10.1007/s11120-012-9731-z

Laanisto, L., & Niinemets, U. (2015). Polytolerance to abiotic stresses: How universal is the shade-drought tolerance trade-off in woody species? Global Ecology and Biogeography, 24(5), 571-580. DOI: https://doi.org/10.1111/geb.12288.

Lemos-Filho, J. P. (2000). Fotoinibição em três espécies do cerrado (Annona crassifolia, Eugenia dysenterica e Campomanesia adamantium) na estação seca e na chuvosa. Revista Brasileira de Botânica, 23(1), 45-50. DOI: https://doi.org/10.1590/S0100-84042000000100005

Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. DOI: https://doi.org/10.1042/bst0110591

Lichtenthaler, H. K., Buschmann, C., & Knapp, M. (2005). How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica, 43(3), 379-393. DOI: https://doi.org/10.1007/s11099-005-0062-6

Long, S. P., Humphries, S., & Falkowski, P. G. (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Biology, 45(1), 633-662. DOI: https://doi.org/10.1146/annurev.pp.45.060194.003221

Lüttge, U. (2008). Physiological ecology of tropical plants (2nd ed.). Berlin, DE: Springer-Verlag.

Prieto, P., Penuelas, J., LIusia, J., Asensio, D., & Estiarte, M. (2009). Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. Acta Physiologiae Plantarum, 31(4), 729-739. DOI: https://doi.org/10.1007/s11738-009-0285-4

Ralph, P. J., & Gademann, R. (2005). Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany, 82(3), 222-237. DOI: https://doi.org/10.1016/j.aquabot.2005.02.006

Sæbø, A., Krekling, T., & Appelgren, M. (1995). Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell, Tissue and Organ Culture, 41, 177-185. DOI: https://doi.org/10.1007/BF00051588

Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 16(1), 53-60. DOI: https://doi.org/10.1016/j.tplants.2010.10.001

Takahashi, S., & Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13(4), 178-182. DOI: https://doi.org/10.1016/j.tplants.2008.01.005

Valladares, F., & Pearcy, R. W. (1998). The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub. Oecologia, 114(1), 1-10. DOI: https://doi.org/10.1007/s004420050413

Valladares, F., Laanisto, L., Niinemets, U., & Zavala, M. A. (2016). Shedding light on shade: Ecological perspectives of understorey plant life. Plant Ecology & Diversity, 9(3), 237-251. DOI: https://doi.org/10.1080/17550874.2016.1210262

van Kooten, O., & Snel, J. F. H. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25(3), 147-150. DOI: https://doi.org/10.1007/BF00033156

Vass, I. (2012). Molecular mechanisms of photodamage in the photosystem II complex. Biochimica et Biophysica Acta – Bioenergetics, 1817(1), 209-217. DOI: https://doi.org/10.1016/j.bbabio.2011.04.014

Walters, R. G. (2005). Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany, 56(411), 435-447. DOI: https://doi.org/10.1093/jxb/eri060

Werner, C., Correia, O., & Beyschlag, W. (2002). Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. Functional Plant Biology, 29(29), 999-1011. DOI: https://doi.org/10.1071/PP01143

Werner, C., Ryel, R. J., Correia, O., & Beyschlag, W. (2001). Structural and functional variability within the canopyand its relevance for carbon gain and stress avoidance. Acta Oecologica, 22(2), 129-138. DOI: https://doi.org/10.1016/S1146-609X(01)01106-7

White, A. J., & Critchley, C. (1999). Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research, 59, 63-72. DOI: https://doi.org/10.1023/A:1006188004189

Yang, D.-H., Webster, J., Adam, Z., Lindahl, M., & Andersson, B. (1998). Induction of acclimative proteolysis of the light-harvesting chlorophyll a/b protein of photosystem II in response to elevated light intensities. Plant Physiology, 118(3), 827-834. DOI: https://doi.org/10.1104/pp.118.3.827

Zhu, J.-K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313-324. DOI: https://doi.org/10.1016/j.cell.2016.08.029

Published
2022-03-09
How to Cite
Lima, D. de P., Torre, F. D., Cordeiro, Áurea R., Scotti, M. R., & França, M. G. C. (2022). Shade induces contrasting light photosynthetic performance between Signal and Guinea Grasses. Acta Scientiarum. Agronomy, 44(1), e53561. https://doi.org/10.4025/actasciagron.v44i1.53561
Section
Crop Production

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus