Physiological and biochemical responses of osmo-primed parsley seeds subjected to saline stress

Keywords: Petroselinum crispum; primed seeds; vigour; antioxidant system.

Abstract

Water and salt stress conditions affect germination and seedling emergence. It is known that physiological priming can not only trigger different mechanisms to increase the speed and uniformity of germination, but also influence the antioxidant defence system of the seeds, especially in adverse conditions. In this context, the objective of this work was to evaluate the physiological seed quality and the activity of antioxidant enzymes in seeds of Petroselinum crispum induced to tolerate saline stress through osmo-priming. Seeds were placed in polyethylene glycol solutions with three osmotic potentials (-0.5, -1.0 or -1.5 MPa) for 2, 4 or 6 days. Subsequently, they were placed on substrates moistened with sodium chloride solution (NaCl), in concentrations that generated osmotic potentials of -0.2, -0.4, -0.6, -0.8 or -1.0 MPa, to germinate. The germination percentage, germination speed index, seedling length, fresh weight, dry weight and activity of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were evaluated. Germination and germination speed index decreased linearly with the increase in NaCl concentrations, indicating the species sensitivity. As for length, fresh weight and dry weight of seedlings, this effect was more expressive from the potential of -0.4 MPa. The vigour and activity of SOD, POD, and CAT enzymes were reduced in unprimed seeds, emphasising the effectiveness of the technique. The induction of tolerance to saline stress can be related to the activity of the antioxidant system observed in seeds.

Downloads

Download data is not yet available.

References

Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18. DOI: https://doi.org/10.3390/agronomy7010018

Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331-1341. DOI: https://doi.org/10.1093/jexbot/53.372.1331

Amooaghaie, R., & Nikzad, K. (2013). The role of nitric oxide in priming-induced low-temperature tolerance in two genotypes of tomato. Seed Science Research, 23(2), 123-131. DOI: https://doi.org/10.1017/S0960258513000068

Ansari, O., & Sharif-Zadeh, F. (2012). Osmo and hydro priming improvement germination characteristics and enzyme activity of Mountain Rye (Secale montanum) seeds under drought stress. Journal of Stress Physiology & Biochemistry, 8(4), 253-261.

Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701

Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. DOI: https://doi.org/10.1016/j.plantsci.2003.10.024

Askari, H., Kazemitabar, S. K., Zarrini, H. N., & Saberi, M. H. (2016). Salt tolerance assessment of barley (Hordeum Vulgar L.) genotypes at germination stage by tolerance indices. Open Agriculture, 1(1), 37-44. DOI: https://doi.org/10.1515/opag-2016-0005

Bailey-Serres, J., & Mittler, R. (2006). The roles of reactive oxygen species in plant cells. Plant Physiology, 141(2), 311. DOI: https://doi.org/10.1104/pp.104.900191

Bailly, C. (2004). Active oxygen species and antioxidants in seed biology. Seed Science Research, 14(2), 93-107. DOI: https://doi.org/10.1079/SSR2004159

Batista, T. B., Cardoso, E. D., Binotti, F. F. S., Sá, M. E., & Haga, K. I. (2015). Nutrientes e giberelina no condicionamento fisiológico sob a qualidade de sementes de braquiária. Revista de Agricultura Neotropical, 2(1), 10-16. 2015. DOI: https://doi.org/10.32404/rean.v2i1.253

Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. DOI: https://doi.org/10.1016/0003-2697(71)90370-8

Bewley, J. D., & Black, M. (1994). Seeds: physiology of development and germination (2nd ed.). New York, NY: Springer.

Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: physiology of development, germination and dormancy (3rd ed.). New York, NY: Springer.

Braccini, A. L., Ruiz, H. A., Braccini, M. C. L., & Reis, M. S. (1996). Germinação e vigor de sementes de soja sob estresse hídrico induzido por soluções de cloreto de sódio, manitol e polietileno glycol. Revista Brasileira de Sementes, 18(1), 10-16. DOI: http://dx.doi.org/10.17801/0101-3122/rbs.v18n1p10-16

Caldeira, C. M., Carvalho, M. L. M., Guimarães, R. M., & Coelho, S. V. B. (2014). Physiological priming and pelleting of tobacco seeds. Seed Science and Technology, 42(2), 180-189. DOI: https://doi.org/10.15258/sst.2014.42.2.07

Carvalho, N. M., & Nakagawa, J. (2012). Sementes: ciência, tecnologia e produção (5a ed.). Jaboticabal, SP: Funep.

Caseiro, R., Bennett, M. A., & Marcos-Filho, J. (2004). Comparison of three priming techniques for onion seed lots differing in initial seed quality. Seed Science and Technology, 32(2), 365-375. DOI: https://doi.org/10.15258/sst.2004.32.2.09

Chen, K., & Arora, R. (2011). Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Science, 180(2), 212- 220. https://doi.org/10.1016/j.plantsci.2010.08.007

Dantas, B. F., Silva, R. C. B., Ribeiro, R. C., & Aragão, C. A. (2015). Respiration and antioxidant enzymes activity in watermelon seeds and seedlings subjected to salt and temperature stresses. American Journal of Experimental Agriculture, 7(2), 70-77. DOI: https://doi.org/10.9734/AJEA/2015/15749

Dantas, E. P., Queiroga, R. C. F., Silva, Z. L., Assis, L. E., & Sousa, F. F. (2018). Produção e qualidade do meloeiro sob osmocondicionamento da semente e níveis de salinidade da água. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13(1), 8-15. DOI: https://doi.org/10.18378/rvads.v13i1.5013

Fan, H.-F., Du, C.-X., Ding, L., & Xu, Y.-L. (2013). Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta Physiologiae Plantarum, 35(9), 2707-2719. DOI: https://doi.org/10.1007/s11738-013-1303-0

Farooq, M., Hussain, M., Nawaz, A., Lee, D.-J., Alghamdi, S. S., & Siddique, K. H. M. (2017). Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiology and Biochemistry, 111, 274-283. DOI: https://doi.org/10.1016/j.plaphy.2016.12.012

Foti, C., Khah, E. M., & Pavli, O. I. (2018). Germination profiling of lentil genotypes subjected to salinity stress. Plant Biology, 21(3), 480-486. DOI: https://doi.org/10.1111/plb.12714

Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17(7), 1866-1875. DOI: https://doi.org/10.1105/tpc.105.033589

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. DOI: https://doi.org/10.1016/j.plaphy.2010.08.016

Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11(1), 100-105.

Kandil, A. A., Shareif, A. E., & Gad, M. A. (2017). Effect of salinity on germination and seeding parameters of forage cowpea seed. Research Journal of Seed Science, 10(1), 17-26. DOI: https://doi.org/10.3923/rjss.2017.17.26

Karpinski, S., Gabrys, H., Mateo, A., Karpinska, B., & Mullineaux, P. M. (2003). Light perception in plant disease defence signalling. Current Opinion in Plant Biology, 6(4), 390-396. DOI: https://doi.org/10.1016/s1369-5266(03)00061-x

Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Science and Technology, 31(3), 715-725. DOI: https://doi.org/10.15258/sst.2003.31.3.20

Khan, M. A., & Gulzar, S. (2003). Germination responses of Sporobolus ioclados: a saline desert grass. Journal of Arid Environments, 53(3), 387-394. DOI: https://doi.org/10.1006/jare.2002.1045

Khatar, M., Mohammadi, M. H., & Shekari, F. (2017). Some physiological responses of wheat and bean to soil salinity at low matric suctions. International Agrophysics, 31(1), 83-91. DOI: https://doi.org/10.1515/intag-2016-0028

Kibinza, S., Bazin, J., Bailly, C., Farrant, J. M., & Corbineau, F. (2011). Catalase is a key enzyme in seed recovery from ageing during priming. Plant Science, 181(3), 309-315. DOI:10.1016/j.plantsci.2011.06.003

Kim, Y.-H., Kim, C. Y., Song, W.-K., Park, D.-S., Kwon, S.-Y., Lee, H.-S., … Kwak, S.-S. (2008). Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta, 227(4), 867-881. DOI: https://doi.org/10.1007/s00425-007-0663-3

Kozlowski, T. T., & Pallardy, S. G. (2002). Acclimation and adaptive responses of woody plants to environmental stresses. Botanical Review, 68(2), 270-334. DOI: https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2

Larcher, W. (2000). Ecofisiologia vegetal. São Carlos, SP: APGIQ.

Madany, M. M. Y., & Khalil, R. R. (2017). Seed priming with ascorbic acid or calcium chloride mitigates the adverse effects of drought stress in sunflower (Helianthus annuus L.) seedlings. The Egyptian Journal of Experimental Biology, 13(1), 119-133. DOI: https://doi.org/10.5455/egyjebb.20170409090612

Maguire, J. D. (1962). Speed of germination – aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176-177. DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x

Maher, S., Fraj, H., & Cherif, H. (2013). Effect of NaCl priming on seed germination of Tunisian fenugreek (Trigonella foenum-graecum L.) under salinity conditions. Journal of Stress Physiology & Biochemistry, 9(2), 86-96.

Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London, UK: Academic Press.

Matias, J. R., Torres, S. B., Leal, C. C. P., Leite, M. S., & Carvalho, S. M. C. (2018). Hydropriming as inducer of salinity tolerance in sunflower seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(4), 255-260. DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n4p255-260

Matthews, S., & Khajeh-Hosseini, M. (2007). Length of the lag period of germination and metabolic repair explain vigour differences in seed lots of maize (Zea mays). Seed Science and Technology, 35(1), 200-212. DOI: https://doi.org/10.15258/sst.2007.35.1.18

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. DOI: https://doi.org/10.1016/s1360-1385(02)02312-9

Nascimento, W. M. (2003). Preventing thermoinhibition in a thermosensitive lettuce genotype by seed imbibition at low temperature. Scientia Agricola, 60(3), 477-480. DOI: https://doi.org/10.1590/S0103-90162003000300010

Nascimento, W. M. (2005). Condicionamento osmótico de sementes de hortaliças visando a germinação em condições de temperaturas baixas. Horticultura Brasileira, 23(2), 211-214. DOI: https://doi.org/10.1590/S0102-05362005000200010

Nascimento, W. M., & Lima, L. B. (2008). Condicionamento osmótico de sementes de berinjela visando a germinação sob temperaturas baixas. Revista Brasileira de Sementes, 30(2), 224-227.

Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology, 164(4), 1636-1648. DOI: https://doi.org/10.1104/pp.113.233478

Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., & Foyer, C. H. (2002). Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration? Annals of Botany, 89(7),

-850. DOI: https://doi.org/10.1093/aob/mcf096

Oliveira, A. B., & Gomes-Filho, E. (2010). Efeito do condicionamento osmótico na germinação e vigor de sementes de sorgo com diferentes qualidades fisiológicas. Revista Brasileira de Sementes, 32(3), 25-34. DOI: https://doi.org/10.1590/S0101-31222010000300003

Oliveira, C. E. S., Steiner, F., Zuffo, A. M., Zoz, T., Alves, C. Z., & Aguiar, V. C. B. (2019). Seed priming improves the germination and growth rate of melon seedlings under saline stress. Ciência Rural, 49(7), e20180588. DOI: https://doi.org/10.1590/0103-8478cr20180588

Pang, C. H., & Wang, B. S. (2008). Oxidative stress and salt tolerance in plants. Progress in Botany, 69, 231-245. DOI: https://doi.org/10.1007/978-3-540-72954-9_9

Patade, V. Y., Bhargava, S., & Suprasanna, P. (2009). Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agriculture, Ecosystems and Environment, 134(1-2), 24-28. DOI: https://doi.org/10.1016/j.agee.2009.07.003

Peixoto, P. H. P., Cambraia, J., Sant'anna, R., Mosquim, P. R., & Moreira, M. A. (1999). Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, 11(3), 137-143.

Rabbani, A. R. C., Nunes, F. B. S., Carvalho, S. V. A., Ferreira, R. A., & Mann, R. S. (2013). Condicionamento osmótico em sementes de girassol (Helianthus annuus L.). Revista Científica UDO Agrícola, 13(1), 50-55.

Seckin, B., Turkan, I., Sekmen, A. H., & Ozfidan, C. (2010). The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69(1), 76-85. DOI: https://doi.org/10.1016/j.envexpbot.2010.02.013

Sevengor, S., Yasar, F., Kusvuran, S., & Ellialtioglu, S. (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research, 6(21), 4920-4924. DOI: https://doi.org/10.5897/AJAR11.668

Shabala, S. (2013). Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of botany, 112(7), 1209–1221. https://doi.org/10.1093/aob/mct205

Shaheen, H. L., Iqbal, M., Azeem, M., Shahbaz, M., & Shehzadi, M. (2016). K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypium hirsutum) seedlings. Archives of Agronomy and Soil Science, 62(6), 759-768. DOI: https://doi.org/10.1080/03650340.2015.1095292

Sharma, A. D., Rathore, S. V. S., Srinivasan, K., & Tyagi, R. K. (2014). Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Scientia Horticulturae, 165, 75-81. DOI: https://doi.org/10.1016/j.scienta.2013.10.044

Silva, T. A., Baldini, L. F. G., Ferreira, G., Nakagawa, J., & Silva, E. A. A. (2017). Thermoinhibition in parsley seeds. Bioscience Journal, 33(6), 1412-1418. DOI: https://doi.org/10.14393/BJ-v33n6a2017-37192

Singh, S., Sengar, R. S., Kulshreshtha, N., & Datta, D. (2015). Assessment of multiple tolerance indices for salinity stress in bread wheat (Triticum aestivum L.). Journal of Agricultural Science, 7(3), 49-57. DOI: http://dx.doi.org/10.5539/jas.v7n3p49

Soeda, Y., Konings, M. C. J. M., Vorst, O., Van Houwelingen, A. M. M. L., Stoopen, G. M., Maliepaard, C. A., … Van Der Geest, A. H. M. (2005). Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiology, 137(1), 354 368. DOI: https://doi.org/10.1104/pp.104.051664

Souza, M. O., Pelacani, C. R., Willems, L. A. J., Castro, R. D., Hilhorst, H. W. M., & Ligterink, W. (2016). Effect of osmopriming on germination and initial growth of Physalis angulata L. under salt stress and on expression of associated genes. Academia Brasileira de Ciências, 88(suppl. 1), 503-516. DOI: https://doi.org/10.1590/0001-3765201620150043

Taiz, L., & Zeiger, E. (2013). Fisiologia Vegetal (5. ed.). Porto Alegre, RS: Artmed.

Teisseire, H., & Guy, V. (2000). Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Science, 153(1), 65-72. DOI: https://doi.org/10.1016/S0168-9452(99)00257-5

Yao, Z., Liu, L., Gao, F., Rampitsch, C., Reinecke, D. M., Ozga, J. A., & Ayele, B. T. (2012). Developmental and seed aging mediated regulation of antioxidative genes and differential expression of proteins during pre- and post-germinative phases in pea. Journal of Plant Physiology, 169(15), 1477-1488. DOI: https://doi.org/10.1016/j.jplph.2012.06.001

Zheng, M., Tao, Y., Hussain, S., Jiang, Q., Peng, S., Huang, J., ... Nie, L. (2016). Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation, 78(2), 167-178. DOI: https://doi.org/10.1007/s10725-015-0083-5

Published
2022-03-09
How to Cite
Manjavachi, M. K. de P., Silva, T. A., Silva, E. A. A. da, Guimarães, C. C., & Sartori, M. M. P. (2022). Physiological and biochemical responses of osmo-primed parsley seeds subjected to saline stress . Acta Scientiarum. Agronomy, 44(1), e54364. https://doi.org/10.4025/actasciagron.v44i1.54364
Section
Crop Production

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus