Peach and nectarine susceptibility to brown rot and protocol optimization to evaluate Monilinia fructicola sporulation
Abstract
The fungus Monilinia fructicola, which causes brown rot in fruits, is one of the main peach pathogens. The emergence of fungicide-resistant fungus isolates, as well as the attempt to reduce sprays, favors adoption of other control strategies. Among them, one of the most important is genetic resistance. This study was carried out aiming to evaluate the susceptibility of 16 peach and 4 nectarine genotypes to brown rot, as well as to evaluate how well the sporulation area and diameter correlate with number of spores in the lesions. Both wounded and non-wounded fruits were inoculated with 10 μL of M. fructicola suspension. Wounded fruits from all genotypes (nectarines and peaches) showed susceptibility to M. fructicola, from 92 to 100% of incidence. The disease incidence was between 18 and 100% when non-wounded fruits were inoculated. High variability was detected for the fungus sporulation, in both wounded and non-wounded fruits, with ranges between 16 to 96% and 0 to 94%, respectively. The fungus sporulation was variable among the genotypes (between 0.1 to 96.0 conidia per mm2) and it is positively correlated with the diameter and area of sporulation. The genotypes Conserva 947, Conserva 1662, Conserva 672, Conserva 1600, and 'Bolinha', are the ones with less susceptible to brown rot.
Downloads
References
Baró-Montel, N., Eduardo, I., Usall, J., Casals, C., Arús, P., Teixidó, N., & Torres, R. (2019). Exploring sources of resistance to brown rot in an interspecific almond × peach population. Journal of the Science of Food and Agriculture, 99(8), 4105-4113. DOI: https://doi.org/10.1002/jsfa.9640
Chen, S., Yuan, N., Schnabel, G., & Luo, C. (2017). Function of the genetic element ‘Mona’ associated with fungicide resistance in Monilinia fructicola. Molecular Plant Pathology, 18(1), 90-97. DOI: https://doi.org/10.1111/mpp.12387
Crisosto, C., Gradziel, T., Ogundiwin, E., Bostock, R., & Michailides, T. J. (2009). Development of predictive tools for brown and sour rot resistance in peach and nectarines (p. 87-93). California Tree Fruit Agreement 2009 Annual Research Report. Retrieved on Aug. 18, 2020 from https://ucanr.edu/repository/fileaccess.cfm?article=92551&p=NSGVHQ
Dallagnol, L. J., & Araujo Filho, J. V. (2018). Uma visão geral da resistência genética da planta a microrganismos. In L. J. Dallagnol (Ed.), Resistência genética de plantas a patógenos (p. 13-64). Pelotas, RS: UFPel.
Elshafie, H. S., Mancini, E., Camele, I., De Martino, L., & De Feo, V. (2015). In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Industrial Crops and Products, 66, 11-15. DOI: https://doi.org/10.1016/j.indcrop.2014.12.031
Feliciano, A., Feliciano, A. J., & Ogawa, J. M. (1987). Monilinia fructicola resistance in peach cultivar Bolinha. Phytopathology, 77(6), 776-780, 1987. DOI: https://doi.org/10.1094/Phyto-77-776
Fu, W., Burrell, R., Linge, C. S., Schnabel, G., & Gasic, K. (2018). Breeding for brown rot (Monilinia spp.) tolerance in Clemson University Peach Breeding Program. Journal of the American Pomological Society, 72(2), 94-100. DOI: https://doi.org/10.17660/ActaHortic.2021.1304.10
Fu, W., Tian, G., Pei, Q., Ge, X., & Tian, P. (2017). Evaluation of berberine as a natural compound to inhibit peach brown rot pathogen Monilinia fructicola. Crop Protection, 91, 20-26. DOI: https://doi.org/10.1016/j.cropro.2016.09.008
Garcia-Benitez, C., Melgarejo, P., De Cal, A., & Fontaniella, B. (2016). Microscopic analyses of latent and visible Monilinia fructicola infections in nectarines. PLoS ONE, 11(8), 1-16. DOI: https://doi.org/10.1371/journal.pone.0160675
Gell, I., De Cal, A., Torres, R., Usall, J., & Melgarejo, P. (2009). Conidial density of Monilinia spp. on peach fruit surfaces in relation to the incidences of latent infections and brown rot. European Journal of Plant Pathology, 123(4), 415-424. DOI: https://doi.org/10.1007/s10658-008-9378-y
Kadish, D., Grinberger, M., & Cohen, Y. (1990). Fitness of metalaxyl-sensitive and metalaxyl resistant isolates of Phytophthora infestans on susceptible and resistant potato cultivars. Phytopathology, 80(2), 200-205. DOI: https://doi.org/10.1094/Phyto-80-200
Kushalappa, A. C., & Gunnaiah, R. (2013). Metabolo-proteomics to discover plant biotic stress resistance genes. Trends in Plant Science, 18(9), 522-531. DOI: https://doi.org/10.1016/j.tplants.2013.05.002
Hily, J. M., Singer, S. D., Villani, S. M., & Cox, K. D. (2011). Characterization of the cytochrome b (cyt b) gene from Monilinia species causing brown rot of stone and pome fruit and its significance in the development of QoI resistance. Pest Management Science, 67(4), 385-396. DOI: https://doi.org/10.1002/ps.2074
Lee, M., & Bostock, R. M. (2006). Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola. Phytopathology, 96(10), 1072-1080. DOI: https://doi.org/10.1094/phyto-96-1072
Luo, C. X., Hu, M. J., Jin, X., Yin, L. F., Bryson, P. K., & Schnabel, G. (2010). An intron in the cytochrome b gene of Monilinia fructicola mitigates the risk of resistance development to QoI fungicides. Pest Management Science, 66(12), 1308-1315. DOI: https://doi.org/10.1002/ps.2016
Martínez-García, P. J., Parfitt, D. E., Bostock, R. M., Fresnedo-Ramírez, J., Vazquez-Lobo, A., Ebenezer, A., ... Crisosto, C. H. (2013). Application of Genomic and Quantitative Genetic Tools to Identify Candidate Resistance Genes for Brown Rot Resistance in Peach. PLoS One, 8(11), 1-12. DOI: https://doi.org/10.1371/journal.pone.0078634
May-de-Mio, L. L., Moreira, L. M., Monteiro, L. B., & Justiniano Júnior, P. R. (2008). Infection of Monilinia fructicola in budding stages and incidence of brown rot on fruits in two peach production systems. Tropical Plant Pathology, 33(3), 227-234. DOI: https://doi.org/10.1590/S1982-56762008000300008
May-de-Mio, L. L., Garrido, L. R., Ueno, B., & Fajardo, T. V. M. (2014). Doenças da cultura do pessegueiro e métodos de controle. In M. C. B. Raseira, J. F. M. Pereira, & F. L. C. Carvalho (Eds.), Pessegueiro (p. 355-432). Brasília, DF: Embrapa.
Michailides, T. J., & Morgan, D. P. (1997). Influence of fruit-to-fruit contact on the susceptibility of French prune to infection by Monilinia fructicola. Plant Disease, 81(12), 1416-1424. DOI: https://doi.org/10.1094/PDIS.1997.81.12.1416
Obi, V. I., Barriuso, J. J., Moreno, M. A., Giménez, R., & Gogorcena, Y. (2017). Optimizing protocols to evaluate brown rot (Monilinia laxa) susceptibility in peach and nectarine fruits. Australasian Plant Pathology, 46(2), 183-189. DOI: https://doi.org/10.1007/s13313-017-0475-2
Obi, V. I., Barriuso, J. J., Usall, J., & Gogorcena, Y. (2019). Breeding strategies for identifying superior peach genotypes resistant to brown rot. Scientia Horticulturae, 246, 1028-1036. DOI: https://doi.org/10.1016/j.scienta.2018.10.027
Oliveira Lino, L., Pacheco, I., Mercier, V., Faoro, F., Bassi, D., Bornard, I., & Quilot-Turion, B. (2016). Brown rot strikes Prunus fruit: an ancient fight almost always lost. Journal of Agricultural and Food Chemistry, 64(20), 4029-4047. DOI: https://doi.org/10.1021/acs.jafc.6b00104.
Pacheco, I., Bassi, D., Eduardo, I., Ciacciulli, A., Pirona, R., Rossini, L., & Vecchietti, A. (2014). QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genetics & Genomes, 10(5), 1223-1242. DOI: https://doi.org/10.1007/s11295-014-0756-7
Pazolini, K., Santos, I., Citadin, I., Storck, L., & Flores, M. F. (2016). Sampling plan for assessing brown rot severity in peaches subjected to different plant extracts. Revista Caatinga, 29(3), 519-527. DOI: https://doi.org/10.1590/1983-21252016v29n301rc
Rios, J. A., & Debona, D. (2018). Efeito epidemiológico da resistência de hospedeiro. In L. J. Dallagnol (Ed.), Resistência genética de plantas a patógenos (p. 126-149). Pelotas, RS: UFPel.
Santos, J., Raseira, M. C. B., & Zanandrea, I. (2012). Resistência à podridão-parda em pessegueiro. Bragantia, 71(2), 219-225. DOI: https://doi.org/10.1590/S0006-87052012005000022
Santos, J., & Ueno, B. (2014). Controle da podridão-parda no Brasil. In M. S. Mitidieri, & J. A. Castillo (Eds.), Manejo de la podredumbre morena (Monilinia fructicola y M. laxa) en huertos frutales de Uruguay, Chile, Bolivia, Brasil y Argentina (p. 73-77, Repositorio Institucional Biblioteca Digital). Santiago de Chile, CH: INTA DIGITAL..
Scariotto, S., Santos, J., & Raseira, M. C. B. (2015). Search for resistance sources to brown rot in Brazilian peach genotypes. Acta Horticulturae, 1084, 211-216. DOI: https://doi.org/10.17660/ActaHortic.2015.1084.29
Sun, M. H., Gao, L, Liu, X. Z., & Wan, J. L. (2009). Fungal sporulation in two-stage cultivation. Mycosystema, 28(1), 64-72.
Thomidis, T., Michailides, T., & Exadaktylou, E. (2009). Contribution of pathogens to peach fruit rot in northern Greece and their sensitivity to iprodione, carbendazim, thiophanate-methyl and tebuconazole fungicides. Journal of Phytopathology, 157(3), 194-200. DOI: https://doi.org/10.1111/j.1439-0434.2008.01469.x
Walter, M., Mclaren, G. F., Fraser, J. A., Frampton, C. M., Boyd-Wilson, K. S. H., & Perry, J. H. (2004). Methods of screening apricot fruit for resistance to brown rot caused by Monilinia spp. Australasian Plant Pathology, 33, 541-547. DOI: https://doi.org/10.1071/AP04062
Zhu, F., Bryson, P. K., & Schnabel, G. (2012). Influence of storage approaches on instability of propiconazole resistance in Monilinia fructicola. Pest Management Science, 68(7), 1003-1009. DOI: https://doi.org/10.1002/ps.3255
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.