Seed quality of Brachiaria brizantha by X-ray image analysis using a Bayesian approach
Abstract
Brachiaria brizantha is the most economically important forage grass in Brazil and is propagated through sowing. Producing high-quality seeds has been a constant challenge due to their uneven maturation. The development and application of precise and non-destructive methods for identifying internal damages to seeds, such as the X-ray test, which quickly indicates the quality of the lots, is of fundamental importance for the seed industry. In this work, the quality of Brachiaria brizantha seeds was analyzed based on the morphological characteristics observed in X-ray images that were related to viability using a mixture model under a Bayesian approach, with the following objectives: i) verify the adequacy of the Bayesian modeling used in the data analysis; ii) associate the efficiency of using radiographs as a way to assess the viability of the seeds; and iii) relate the classifications carried out by evaluators with the probability of originating normal or abnormal seedlings. The methodology applied for the analysis proved to be adequate. Further, the Bayesian estimates for parameters related to internal morphology were established with associated levels of uncertainty, which represents an advantage over usual frequentist methods. Based on the model's estimates, seeds evaluated as potentially unviable by three evaluators had practically no probability of germination and did not germinate in the test applied later. Seeds classified as potentially viable had a high probability of developing into normal seedlings, while 73.27% showed this property in the germination test.
Downloads
References
Achcar, J. A., & Ruffino Netto, A. (2003). Estudo da prevalência da tuberculose: uso de métodos bayesianos. Revista Brasileira de Epidemiologia, 6(4), 380-387. DOI: https://doi.org/10.1590/S1415-790X2003000400012
Batista, T. B., Cardoso, E. D., Binotti, F. F. S., Costa, E., & Sá, M. E. (2016a). Priming and stress under high humidity and temperature on the physiological quality of Brachiaria brizantha cv. MG-5 seeds. Acta Scientiarum. Agronomy, 38(1), 123-127. DOI: https://doi.org/10.4025/actasciagron.v38i1.26021
Batista, T. B., Binotti, F. F. S., Cardoso, E. D., Costa, E., & Nascimento, D. M. (2016b). Appropriate hydration period and chemical agent improve priming in brachiaria seeds. Pesquisa Agropecuária Tropical, 46(3), 350-356. DOI: https://doi.org/10.1590/1983-40632016v4638422
Bilancia, M., & Pollice, A. (1999). Bayesian estimation of finite mixtures of Gaussian mixtures. Metron - International Journal of Statistics, 57(1-2), 181-208.
Bino, R. J., Aartse, J. W., & Van Der Burg, W. J. (1993). Non-destructive X-ray analysis of Arabidopsis embryo mutants. Seed Science Research, 3(3), 167-170. DOI: https://doi.org/10.1017/S0960258500001744
Bodnar, O., Muhumuza, R. N., & Possolo, A. (2020). Bayesian inference for heterogeneity in meta-analysis. Metrologia, 57(6). DOI: https://doi.org/10.1088/1681-7575/abb064
Brasil. (2008). Ministério da Agricultura, Pecuária e do Abastecimento. Instrução Normativa nº 30, de 21 de maio de 2008. Diário Oficial da União, 23 maio 2008, Seção 1, p. 45.
Brasil. (2009). Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, DF: MAPA.
Cicero, S. M, Van Der Heijden, G. W. A. M, Van Der Burg, W. J, & Bino, R. J. (1998). Evaluation of mechanical damage in seeds of maize (Zea mays L.) by X-ray and digital imaging. Seed Science and Technology, 26(3), 603-612.
Cardoso, E. D., Sá, M. E., Haga, K. I., Binotti, F. F. S., Nogueira, D. C., & Valério Filho, W. V. (2014). Desempenho fisiológico e superação de dormência em sementes de Brachiaria brizantha submetidas a tratamento químico e envelhecimento artificial. Semina: Ciências Agrárias, 35(1), 21-38. DOI: https://doi.org/10.5433/1679-0359.2014v35n1p21
Copeland, L. O., & McDonald, M. B. (2001). Principles of seed science and technology (4th ed.). New York, NY: Springer US.
Diebolt, J., & Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society, 56(2), 363-375. DOI: https://doi.org/10.1111/j.2517-6161.1994.tb01985.x
Gaspar-Oliveira, C. M., Martins, C. C., Nakagawa, J., & Cavariani, C. (2008). Duração do teste de germinação de Brachiaria brizantha cv. Marandu (Hochst. ex A. Rich.) Stapf. Revista Brasileira de Sementes, 30(3), 30-38. DOI: https://doi.org/10.1590/S0101-31222008000300005
Gomes Junior, F. G. (2010). Aplicação da análise de imagens para avaliação da morfologia interna de sementes. Informativo ABRATES, 20(3), 33-51.
Gomes, K. B. P., Martins, R. D. C. C., Martins, I. S., & Gomes Junior, F. G. (2014). Avaliação da morfologia interna de sementes de Terminalia argentea (Combretaceae) pelo teste de raios X. Revista Ciência Agronômica, 45(4), 752-759. DOI: https://doi.org/10.1590/S1806-66902014000400013
Gordon, A., Gosling, P., & Wang, B. (1991). Tree and shrub seed handbook (4th ed.). Zürich, SW: ISTA.
Heidelberger, P., & Welch, P. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31(6), 1109-1144. DOI: https://doi.org/10.1287/opre.31.6.1109
Jeromini, T. S., Martins, C. C., Pereira, F. E. C. B., & Gomes Junior, F. G. (2019). The use of X-ray to evaluate Brachiaria brizantha seeds quality during seed processing. Revista Ciência Agronômica, 50(3), 439-446. DOI: https://doi.org/10.5935/1806-6690.20190052
Junqueira, V. S., Peixoto, L. A., Laviola, B. G., Bhering, L. L., Mendonça, S., Costa, T. S. A., & Antoniassi, R. (2016). Bayesian multi-trait analysis reveals a useful tool to increase oil concentration and to decrease toxicity in Jatropha curcas L. PLoS ONE, 11(8), 1-2. DOI: https://doi.org/10.1371/journal.pone.0161046
Lima, L. K., Santos, C. C., Dutra, A. S., & Barros, G. L. (2013). Utilização de técnicas na avaliação de sementes por imagem. Agropecuária Científica no Semi-Árido, 9(3), 01-06. DOI: https://doi.org/10.30969/acsa.v9i3.291
Marin, J. M., Mengersen, K., & Robert, C. P. (2005). Bayesian modelling and inference on mixtures of distributions. Handbook of Statistics, 25, 459-507. DOI: https://doi.org/10.1016/S0169-7161(05)25016-2
McNeish, D. (2016). On using Bayesian methods to address small sample problems. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 750-773. DOI: https://doi.org/10.1080/10705511.2016.1186549
Medeiros, A. D., Pinheiro, D. T., Xavier, W. A., Silva, L. J., & Dias, D. C. F. S. (2020). Quality classification of Jatropha curcas seeds using radiographic images and machine learning. Industrial Crops and Products, 146, 1-7. DOI: https://doi.org/10.1016/j.indcrop.2020.112162
Menezes, N. L., Cícero, S. M., & Villela, F. A. (2005). Identificação de fissuras em sementes de arroz, após a secagem artificial, por meio de raios X. Ciência Rural, 35(5), 1194-1196. DOI: https://doi.org/10.1590/S0103-84782005000500033
Mondo, V. H. V., & Cicero, S. M. (2005). Análise de imagens na avaliação da qualidade de sementes de milho localizadas em diferentes posições na espiga. Revista Brasileira de Sementes, 27(1), 9-18. DOI: https://doi.org/10.1590/S0101-31222005000100002
Novembre, A. D. D. L. C., Chamma, H. M. C. P., & Gomes, R. B. R. (2006). Viabilidade das sementes de braquiária pelo teste de tetrazólio. Revista Brasileira de Sementes, 28(2), 147-151. DOI: https://doi.org/10.1590/S0101-31222006000200020
Pereira, C. E., Oliveira, J. A., Rosa, M. C. M., & Kikuti, A. L. P. (2011). Armazenamento de sementes de braquiária peletizadas e tratadas com fungicida e inseticida. Ciência Rural, 41(12), 2060-2065. DOI: https://doi.org/10.1590/S0103-84782011001200004
Perez-Elizalde, S., Jarquin, D., & Crossa, J. (2011). A general Bayesian estimation method of linear–bilinear models applied to plant breeding trials with genotype×environment interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17(1), 15–37. DOI: https://doi.org/10.1007/s13253-011-0063-9
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.
Raftery, A. E., & Lewis, S. (1992). How many iterations in the Gibbs sampler? In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian Statistics (p. 763-773). Oxford, UK: Oxford University.
Rocha, R. C., Sáfadi, T., & Carvalho, M. L. M. (2013). Análise bayesiana do potencial de viabilidade de sementes de mamona por meio de análise radiográfica. Revista Brasileira de Estatística, 74(238), 101-127.
Rufo, M. J., Martín, J., & Pérez, C. J. (2006). Bayesian analysis of finite mixture models of distributions from exponential families. Computational Statistics, 21(3-4), 621-637. DOI: https://doi.org/10.1007/s00180-006-0018-8
Ruggiero, M. A. G., & Lopes, V. L. R. (1997). Cálculo numérico: aspectos teóricos e computacionais. São Paulo, SP: Makron Books.
Schlattmann, P. (2009). Medical applications of finite mixture models. Berlin, GE: Springer.
Silva, G. Z., Martins, C. C., Cruz, J. O., Jeromini, T. S., & Bruno, R. L. A. (2017). Evaluation the physiological quality of Brachiaria brizantha cv. BRS ‘Piatã’ seeds. Bioscience Journal, 33(3), 572-580. DOI: https://doi.org/10.14393/BJ-v33n3-36519
Simak, M., & Gustafsson, A. (1953). X-ray photography and sensitivity in forest tree species. Hereditas, 39(3-4), 458-468. DOI: https://doi.org/10.1111/j.1601-5223.1953.tb03430.x
Simpson, D., Rue, H., Riebler, A., Martins, T. G., & Sorbye, S. H. (2017). Penalising model component complexity: a principled, practical approach to constructing priors. Statistical Science, 32(1), 1-28. DOI: https://doi.org/10.1214/16-STS576
Smith, B. J. (2007). boa: An R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21(11), 1-37. DOI: https://doi.org/10.18637/jss.v021.i11
Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. The Annals of Statistics, 28(1), 40-74. DOI: https://doi.org/10.1214/aos/1016120364
Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82(398), 528-540. DOI: https://doi.org/10.1080/01621459.1987.10478458
Warnes, G. R., Bolker, B., & Thomas, L. (2018). gtools: Various R Programming Tools. R package version 3.8.1. Retrieved on Aug. 20, 2020 from https://CRAN.R-project.org/package=gtools
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.