Estimation of genetic parameters and selection gains for sweet potato using Bayesian inference with a priori information
Abstract
The selection of superior sweet potato genotypes using Bayesian inference is an important strategy for genetic improvement. Sweet potatoes are of social and economic importance, being the material for ethanol production. The estimation of variance components and genetic parameters using Bayesian inference is more accurate than that using the frequently used statistical methodologies. This is because the former allows for using a priori knowledge from previous research. Therefore, the present study estimated genetic parameters and selection gains, predicted genetic values, and selected sweet potato genotypes using a Bayesian approach with a priori information. Root shape, soil insect resistance, and root and shoot productivity of 24 sweet potato genotypes were measured. Heritability, genotypic variation coefficient, residual variation coefficient, relative variation index, and selection gains direct, indirect and simultaneous were estimated, and the data were analyzed using Bayesian inference. Data from 11 experiments were used to obtain a priori information. Bayesian inference was a useful tool for decision-making, and significant genetic gains could be achieved with the selection of the evaluated genotypes. Root shape, soil insect resistance, commercial root productivity, and total root productivity showed higher heritability values. Clones UFVJM06, UFVJM40, UFVJM54, UFVJM09, and CAMBRAIA can be used as parents in future breeding programs.
Downloads
References
Alves, J. C. D. S., Peixoto, J. R., Vieira, J. V., & Boiteux, L. S. (2006). Herdabilidade e correlações genotípicas entre caracteres de folhagem e sistema radicular em famílias de cenoura, cultivar Brasília. Horticultura Brasileira, 24(3), 363-367. DOI: https://doi.org/10.1590/S0102-05362006000300019
Andrade Júnior, V. C., Elsayed, A. Y. A. M., Azevedo, A. M., Santos, E. A., & Ferreira, M. A. M. (2018). Potencial quantitativo e qualitativo de genótipos batata-doce. Scientia Agraria, 19(1), 28-35. DOI: https://doi.org/10.5380/rsa.v19i1.50158
Andrade Júnior, V. C., Viana, D. J. S., Pinto, N. A., Ribeiro, K. G., Pereira, R. C., Neiva, I. P., ... Andrade, P. C. D. R. (2012). Características produtivas e qualitativas de ramas e raízes de batata-doce. Horticultura Brasileira, 30(4), 584-589. DOI: https://doi.org/10.1590/S0102-05362012000400004
Andrade Júnior, V. C., Viana, D. J., Fernandes, J. S., Figueiredo, J. A., Nunes, U. R., & Neiva, I. P. (2009). Selection of sweet potato clones for the region Alto Vale do Jequitinhonha. Horticultura Brasileira, 27(3), 389-393. DOI: https://doi.org/10.1590/S0102-05362009000300024
Apiolaza, L. A., Chauhan, S. S., & Walker, J. C. (2011). Genetic control of very early compression and opposite wood in Pinus radiata and its implications for selection. Tree Genetics & Genomes, 7(3), 563-571. DOI: https://doi.org/10.1007/s11295-010-0356-0
Azevedo, A. M., Andrade Júnior, V. C. D., Santos, A. A. D., Sousa Júnior, A. S. D., Oliveira, A. J. M., & Ferreira, M. A. M. (2017). Population parameters and selection of kale genotypes using Bayesian inference in a multi-trait linear model. Acta Scientiarum. Agronomy, 39(1), 25-31. DOI: https://doi.org/10.4025/actasciagron.v39i1.30856
Azevedo, A. M., Andrade Júnior, V. C., Fernandes, J. S. C., Pedrosa, C. E., & Oliveira, C. M. (2015). Desempenho agronômico e parâmetros genéticos em genótipos de batata-doce. Horticultura Brasileira, 33(1), 84-90. DOI: https://doi.org/10.1590/hb.v33i01.279
Azevedo, S. D., Maluf, W. R., Silveira, M. D., & Freitas, J. D. (2002). Reação de clones de batata-doce aos insetos de solo. Ciência e Agrotecnologia, 26(3), 545-549
Bink, M. C. A. M., Boer, M. P., Ter Braak, C. J. F., Jansen, J., Voorrips, R. E., & Van de Weg, W. E. (2007). Bayesian analysis of complex traits in pedigreed plant populations. Euphytica, 161(1-2), 85-96. DOI: https://doi.org/10.1007/s10681-007-9516-1
Borges, V., Ferreira, P. V., Soares, L., Santos, G. M., & Santos, A. M. M. (2010). Seleção de clones de batata-doce pelo procedimento REML/BLUP. Acta Scientiarum. Agronomy, 32(4), 643-649. DOI: https://doi.org/10.4025/actasciagron.v32i4.4837
Cavalcante, J. T., Ferreira, P. V., Soares, L., Borges, V., Silva, P. P., & Silva, J. W. (2006). Análise de trilha em caracteres de rendimento de clones de batata- ones de batatadoce (Ipomoea batatas (L.) Lam). Acta Scientiarum. Agronomy, 28(2), 261-266. DOI: https://doi.org/10.4025/actasciagron.v28i2.1119
Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético. Viçosa, MG: Editora UFV.
Euzebio, M. P., Fonseca, I. C. D. B., Fonseca Júnior, N. D. S., Nascimento, M., Giordani, W., & Gonçalves, L. S. A. (2018). Adaptability and stability assessment of bean cultivars of the carioca commercial group by a Bayesian approach. Acta Scientiarum. Agronomy, 40(1), 1-8. DOI: https://doi.org/10.4025/actasciagron.v40i1.35272
Filgueira, F. A. R. (2008). Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. (3rd ed.). Viçosa, MG: Editora UFV.
Ivoglo, M. G., Fazuoli, L. C., Oliveira, A. C. B. D., Gallo, P. B., Mistro, J. C., Silvarolla, M. B., & Toma-Braghini, M. (2008). Divergência genética entre progênies de café robusta. Bragantia, 67(4), 823-831. DOI: https://doi.org/10.1590/S0006-87052008000400003
Kalkmann, D. C., Peixoto, J. R., & Nóbrega, D. S. (2010). Reação de clones de batata-doce à Meloidogyne incognita raças 1 e 4 e estimativa de parâmetros genéticos. Horticultura Brasileira, 31(2), 293-296. DOI: https://doi.org/10.1590/S0102-05362013000200019
Klauenberg, K., Wübbeler, G., Mickan, B., Harris, P., & Elster, C. (2015). A tutorial on bayesian normal linear regression. Metrologia, 52(6), 878-892. DOI: https://doi.org/10.1088/0026-1394/52/6/878
Kuriwada, T., Kumano, N., Shiromoto, K., Haraguchi, D., & Kohama, T. (2012). Suppressing effect of gamma-irradiated weevils on progeny production in the West Indian sweetpotato weevil Euscepes postfasciatus (Coleoptera: Curculionidae). Applied Entomology and Zoology, 47(4), 437-442. DOI: https://doi.org/10.1007/s13355-012-0139-1
Martins, E. C. A., Peluzio, J. M., Coimbra, R. R., & Oliveira Junior, W. P. D. (2012). Variabilidade fenotípica e divergência genética em clones de batata-doce no estado do Tocantins. Revista Ciência Agronômica, 43(4), 691-697. DOI: https://doi.org/10.1590/S1806-66902012000400010
Mathew, B., Bauer, A. M., Koistinen, P., Reetz, T. C., Léon, J., & Sillanpää, M. J. (2012). Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters. Heredity, 109(4), 235-245. DOI: https://doi.org/10.1038/hdy.2012.35
Mathew, B., Léon, J., & Sillanpää, M. J. (2015). Integrated nested Laplace approximation inference and cross-validation to tune variance components in estimation of breeding value. Molecular Breeding, 35(3), 1-9. DOI: https://doi.org/10.1007/s11032-015-0248-y
Menezes, E. L. A. (2002). A broca da batata-doce (Euscepes postfasciatus): descrição, bionomia e controle. Brasília, DF: Embrapa Agrobiologia.
Moreira, J. N., Queiroga, R. C. F., Júnior, A. J. D. L. S., & Santos, M. A. (2011). Caracteres morfofisiológicos e produtivos de cultivares de batata-doce, em Mossoró, RN. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 6(1), 161-167.
Mulamba, N. N., & Mock, J. J. (1978). Improvement of yield potential of the ETO blanco maize (Zea mays L.) population by breeding for plant traits [Mexico]. Egyptian Journal of Genetics and Cytology, 1, 40-51.
Oliveira, A. P. D., Malhado, C. H. M., Barbosa, L. T., Martins Filho, R., & Carneiro, P. L. S. (2015). Inferência bayesiana na avaliação genética de bovinos da raça tabapuã do nordeste brasileiro. Revista Caatinga, 28(4), 227-234. DOI: https://doi.org/10.1590/1983-21252015v28n425rc
Oliveira, E. J., Santana, F. A., Oliveira, L. A., & Santos, V. S. (2014). Genetic parameters and prediction of genotypic values for root quality traits in cassava using REML/BLUP. Genetics and Molecular Research, 13(3), 6683-6700. DOI: https://doi.org/10.4238/2014.August.28.13
Pimentel-Gomes, F. (2009). Curso de estatística experimental. (15. ed.). Piracicaba, SP: Fealq.
Plummer, M. (2019). rjags: Bayesian graphical models using MCMC. R package version 4-10. Retrieved on Aug. 10, 2020 from https://CRAN.Rproject.org/package=rjags.
Silva, F. F., Viana, J. M. S., Faria, V. R., & Resende, M. D. V. (2013). Bayesian inference of mixed models in quantitative genetics of crop species. Theoretical and Applied Genetics, 126(7), 1749-1761. DOI: https://doi.org/10.1007/s00122-012-2023-3.
Silva, J. B. C., Lopes, C. A., & Magalhães, J. S. (2008). Batata-doce: Ipomoea batatas. Brasília, DF: Embrapa/CNPH.
Smith, B. J. (2007). boa: An R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21(11), 1-37.
Teodoro, P. E., Nascimento, M., Torres, F. E., Barroso, L. M. A., & Sagrilo, E. (2015). Perspectiva bayesiana na seleção de genótipos de feijão-caupi em ensaios de valor de cultivo e uso. Pesquisa Agropecuaria Brasileira, 50(10), 878-885. DOI: https://doi.org/10.1590/S0100-204X2015001000003
Torres, L. G., Rodrigues, M. C., Lima, N. L., Trindade, T. F. H., Silva, F. F. E., Azevedo, C. F., & DeLima, R. O. (2018). Multi-trait multi-environment Bayesian model reveals G x E interaction for nitrogen use efficiency components in tropical maize. PloS ONE, 13(6), 1-15. DOI: https://doi.org/10.1371/journal.pone.0199492
Valadares, N. R., Andrade Júnior, V. C., Pereira, R. C., Fialho, C. M. T, & Ferreira, M. A. M. (2019). Effect of different additives on the silage quality of sweet Potato branches. Revista Caatinga, 32(2), 506-513. DOI: https://doi.org/10.1590/1983-21252019v32n223rc.
Waldmann, P., & Ericsson, T. (2006). Comparison of REML and Gibbs sampling estimates of multi-trait genetic parameters in Scots pine. Theoretical and Applied Genetics, 112(8), 1441-1451. DOI: https://doi.org/10.1007/s00122-006- 0246-x.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.