Agronomic and physicochemical parameters of must and wine as a function of changes in ‘Cabernet Sauvignon’ grapevine canopy

Keywords: Vitis vinifera L.; technological maturity; phenolic compounds; methoxypyrazine; Campanha Gaúcha.

Abstract

This study aimed to evaluate the influence of vegetative canopy height on the agronomic characteristics and grape must and wine physicochemical properties of a ‘Cabernet Sauvignon’ vineyard in an espalier-trained system. The evaluated parameters comprised agronomic characteristics of ‘Cabernet Sauvignon’ grapevines and physicochemical compositions of ‘Cabernet Sauvignon’ musts and wines, as well as their phenolic compositions (anthocyanins, stilbenes, and flavonoids), and impact on wine contents of methoxypyrazines (volatile compounds that impart vegetal or earthy odors to wine, which are considered undesirable in large intensity). To that end, four heights of the vegetative canopy were tested: 60 cm (T1), 80 cm (T2), 100 cm (T3), and 120 cm (T4). The experiment was carried out in a commercial vineyard in the region of “Campanha Gaúcha” (Dom Pedrito, Rio Grande do Sul State, Brazil) during the productive cycles of 2015/16, 2016/17, 2017/18, and 2018/19. The main agronomic parameters were measured: estimated productivity per plant and hectare, and mean weight and number of clusters. All wines were elaborated by the same traditional winemaking methods. The physicochemical analyses of must and wines were performed by infrared spectroscopy using Fourier Transform Infrared Spectrometer (FTIR), and the phenolic analysis by high-efficiency liquid chromatography and UV-Vis spectrophotometry. Methoxypyrazines were quantified using headspace solid-phase microextraction (HS-SPME), followed by gas chromatography-mass spectrometry (GC-MS). The results showed that treatments did not influence agronomic parameters. However, technological maturation (sugar accumulation) had interesting results for plants managed at higher canopy heights, with respective results obtained for wine. Treatments had little influence on individual quantification of anthocyanins, although cycles had a high influence on their profile. The wines had low concentrations of methoxypyrazines and did not differ among treatments.

Downloads

Download data is not yet available.

References

Agati, G., Brunetti, C., Di Ferdinando, M., Ferrini, F., Pollastri, S., & Tattini, M. (2013). Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiology and Biochemistry, 72, 35-45. DOI: https://doi.org/10.1016/j.plaphy.2013.03.014

Albertoni, G., & Schor, N. (2015). Resveratrol plays important role in protective mechanisms in renal disease--mini-review. Brazilian Journal of Nephrology, 37(1), 106-114. DOI: https://doi.org/10.5935/0101-2800.20150015

Bindon, K., Holt, H., Williamson, P. O., Varela, C., Herderich, M., & Francis, I. L. (2014). Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 2. Wine sensory properties and consumer preference. Food Chemistry, 154, 90-101. DOI: https://doi.org/10.1016/j.foodchem.2013.12.099

Bindon, K., Varela, C., Kennedy, J., Holt, H., & Herderich, M. (2013). Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon: 1. Grape and wine chemistry. Food Chemistry, 138(2-3), 1696-1705. DOI: https://doi.org/10.1016/j.foodchem.2012.09.146

Blancquaert, E. H., Oberholster, A., Ricardo-da-Silva, J. M., & Deloire, A. J. (2019). Grape flavonoid evolution and composition under altered light and temperature conditions in Cabernet Sauvignon (Vitis vinifera L.). Frontiers in Plant Science, 10(1062), 1-19. DOI: https://doi.org/10.3389/fpls.2019.01062

Bobeica, N., Poni, S., Hilbert, G., Renaud, C., Gomes, E., Delrot, S., & Dai, Z. (2015). Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Frontiers in Plant Science, 6(382), 1-15. DOI: https://doi.org/10.3389/fpls.2015.00382

Borghezan, M., Pit, F. A., Gavioli, O., Malinovski, L. I., & Silva, A. L. (2011). Efeito da área foliar sobre a composição da uva e a qualidade sensorial dos vinhos da variedade Merlot (Vitis vinifera L.) cultivada em São Joaquim, SC, Brasil. Ciência e Técnica Vitivinícola, 26(1), 1-9.

Brighenti, A. F., Rufato, L., Kretzschmar, A. A., & Schlemper, C. (2011). Desempenho vitivinícola da Cabernet Sauvignon sobre diferentes porta-enxertos em região de altitude de Santa Catarina. Revista Brasileira de Fruticultura, 33(1), 96-102. DOI: https://doi.org/10.1590/S0100-29452011005000039

Dai, Z. W., Ollat, N., Gomès, E., Decroocq, S., Tandonnet, J. P., Bordenave, L., ... Delrot, S. (2011). Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review. American Journal of Enology and Viticulture, 62(4), 413-425. DOI: https://doi.org/10.5344/ajev.2011.10116

Del-Castillo-Alonso, M. A., Diago, M. P., Monforte, L., Tardaguila, J., Martinez-Abaigar, J., & Nunez-Olivera, E. (2015). Effects of UV exclusion on the physiology and phenolic composition of leaves and berries of Vitis vinifera cv. Graciano. Journal of the Science of Food and Agriculture, 95(2), 409-416. DOI: https://doi.org/10.1002/jsfa.6738

Del-Castillo-Alonso, M. A., Diago, M. P., Tomas-Las-Heras, R., Monforte, L., Soriano, G., Martinez-Abaigar, J., & Nunez-Olivera, E. (2016). Effects of ambient solar UV radiation on grapevine leaf physiology and berry phenolic composition along one entire season under Mediterranean field conditions. Plant Physiology and Biochemistry, 109, 374-386. DOI: https://doi.org/10.1016/j.plaphy.2016.10.018

Delcambre, A., & Saucier, C. (2012). Identification of new flavan-3-ol monoglycosides by UHPLC-ESI-Q-TOF in grapes and wine. Journal of Mass Spectrometry, 47(6), 727-736. DOI: https://doi.org/10.1002/jms.3007

Dutra, S. V., Adami, L., Marcon, A. R., Carnieli, G. J., Roani, C. A., Spinelli, F. R., … Vanderlinde, R. (2013). Characterization of wines according to the geographical origin by analysis of isotopes and minerals and the influence of harvest on the isotope values. Food Chemistry, 141(3), 2148-2153. DOI: https://doi.org/10.1016/j.foodchem.2013.04.106

Ferrer, M., Pereyra, G., Salvarrey, J., Arrillaga, L., & Fourment, M. (2020). 'Tannat' (Vitis vinifera L.) as a model of responses to climate variability. Vitis, 59(1), 41-46. DOI: https://doi.org/10.5073/vitis.2020.59.41-46

Fontana, A., Rodriguez, I., & Cela, R. (2017). Accurate determination of 3-alkyl-2-methoxypyrazines in wines by gas chromatography quadrupole time-of-flight tandem mass spectrometry following solid-phase extraction and dispersive liquid-liquid microextraction. Journal of Chromatography A, 1515, 30-36. DOI: https://doi.org/10.1016/j.chroma.2017.07.085

Ghanem, C., Taillandier, P., Rizk, M., Rizk, Z., Nehme, N., Souchard, J. P., & El Rayess, Y. (2017). Analysis of the impact of fining agents types, oenological tannins and mannoproteins and their concentrations on the phenolic composition of red wine. LWT - Food Science and Technology, 83, 101-109. DOI: https://doi.org/10.1016/j.lwt.2017.05.009

Gregan, S. M., & Jordan, B. (2016). Methoxypyrazine accumulation and o-methyltransferase gene expression in Sauvignon Blanc grapes: The role of leaf removal, light exposure, and berry development. Journal of Agricultural and Food Chemistry, 64(11), 2200-2208. DOI: https://doi.org/10.1021/acs.jafc.5b05806

Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S., & Lauvergeat, V. (2011). Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 62(8), 2465-2483. DOI: https://doi.org/10.1093/jxb/erq442

Kotseridis, Y. S., Spink, M., Brindle, I. D., Blake, A. J., Sears, M., Chen, X., … Pickering, G. J. (2008). Quantitative analysis of 3-alkyl-2-methoxypyrazines in juice and wine using stable isotope labelled internal standard assay. Journal of Chromatography A, 1190(1-2), 294-301. DOI: https://doi.org/10.1016/j.chroma.2008.02.088

Leão, P. C. d. S., Nunes, B. T. G., & Lima, M. A. C. d. (2016). Canopy management effects on ‘Syrah’ grapevines under tropical semi-arid conditions. Scientia Agricola, 73(3), 209-216. DOI: https://doi.org/10.1590/0103-9016-2014-0408

Lei, Y., Xie, S., Guan, X., Song, C., Zhang, Z., & Meng, J. (2018). Methoxypyrazines biosynthesis and metabolism in grape: a review. Food Chemistry, 245, 1141-1147. DOI: https://doi.org/10.1016/j.foodchem.2017.11.056

Lemut, M. S., Trost, K., Sivilotti, P., & Vrhovsek, U. (2011). Pinot Noir grape colour related phenolics as affected by leaf removal treatments in the Vipava Valley. Journal of Food Composition and Analysis, 24(6), 777-784. DOI: https://doi.org/10.1016/j.jfca.2011.03.003

Luciano, R. V., Albuquerque, J. A., Rufato, L., Miquelluti, D. J., & Warmling, M. T. (2013). Condições meteorológicas e tipo de solo na composição da uva 'Cabernet Sauvignon'. Pesquisa Agropecuária Brasileira, 48(1), 97-104. DOI: https://doi.org/10.1590/s0100-204x2013000100013

Marcon Filho, J. L., Hipólito, J. D. S., Macedo, T. A. D., Kretzschmar, A. A., & Rufato, L. (2015). Raleio de cachos sobre o potencial enológico da uva 'Cabernet Franc' em duas safras. Ciência Rural, 45(12), 2150-2156. DOI: https://doi.org/10.1590/0103-8478cr20140995

Miele, A., & Mandelli, F. (2012). Canopy management and its effect on the yield components of the Merlot grapevine. Revista Brasileira de Fruticultura, 34(4), 964-973. DOI: https://doi.org/10.1590/S010029452012000400002

Miele, A., & Rizzon, L. A. (2013). Intensidades da poda seca e do desbaste de cacho na composição da uva Cabernet Sauvignon. Revista Brasileira de Fruticultura, 35(4), 1081-1092. DOI: https://doi.org/10.1590/S0100-29452013000400020

Mori, K., Goto-Yamamoto, N., Kitayama, M., & Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58(8), 1935-1945. DOI: https://doi.org/10.1093/jxb/erm055

Mozzon, M., Savini, S., Boselli, E., & Thorngate, J. H. (2016). The herbaceous character of wines. Italian Journal of Food Science, 28(2), 190-207. DOI: https://doi.org/10.14674/1120-1770/ijfs.v304

Naor, A., Gal, Y., & Bravdo, B. (1997). Crop load affects assimilation rate, stomatal conductance, stem water potential and water relations of field-grown Sauvignon blanc grapevines. Journal of Experimental Botany, 48(314), 1675-1680. DOI: https://doi.org/10.1093/jxb/48.9.1675

Nicolli, K., Biasoto, A., Guerra, C., dos Santos, H., Correa, L., Welke, J., & Zini, C. (2020). Effects of soil and vineyard characteristics on volatile, phenolic composition and sensory profile of Cabernet Sauvignon wines of Campanha Gaúcha. Journal of the Brazilian Chemical Society, 31(6), 1110-1124. DOI: https://doi.org/10.21577/0103-5053.20190276

Parker, A. K., García de Cortázar-Atauri, I., Gény, L., Spring, J.-L., Destrac, A., Schultz, H., … van Leeuwen, C. (2020). Temperature-based grapevine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agricultural and Forest Meteorology, 285-286. DOI: https://doi.org/10.1016/j.agrformet.2020.107902

Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Handbook of Enology (Vol. 2). Chichester, UK: John Wiley & Sons, Ltd.

Rizzon, L. A., & Sganzerla, V. M. A. (2007). Tartaric and malic acids in the must grapes of Bento Gonçalves-RS, Brazil. Ciência Rural, 37(3), 911-914. DOI: https://doi.org/10.1590/S0103-84782007000300053

Streck, E. V., Kämpf, N., Dalmolin, R. S. D., Klamt, E., Nascimento, P. C., Schneider, P., ... Pinto, L. F. S. (2008). Solos do Rio Grande do Sul (Vol. 2). Porto Alegre, RS: UFRGS.

Sun, R. Z., Cheng, G., Li, Q., He, Y. N., Wang, Y., Lan, Y. B., … Wang, J. (2017). Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Frontiers in Plant Science, 8(547),1-18. DOI: https://doi.org/10.3389/fpls.2017.00547

Tonietto, J., Ruiz, V. S., & Gómez-Miguel, V. D. (2012). Clima, zonificación y tipicidad del vino en regiones vitivinícolas iberoamericanas. Madrid, SP: CYTED.

Wang, H., Race, E. J., & Shrikhande, A. J. (2003). Anthocyanin transformation in Cabernet Sauvignon wine during aging. Journal of Agricultural and Food Chemistry, 51 (27), 7989-7994. DOI: https://doi.org/10.1021/jf034501q

Würz, D. A., Marcon Filho, J. L., Brighenti, A. F., Allebrandt, R., Bem, B. P., Magro, M., … Kretzschmar, A. A. (2017). Effect of shoot topping intensity on 'Cabernet Franc' grapevine maturity in high-altitude region. Pesquisa Agropecuária Brasileira, 52(10), 946-950. DOI: https://doi.org/10.1590/s0100-204x2017001000015

Würz, D. A., Rufato, L., Bogo, A., Allebrandt, R., Bem, B. P., Marcon Filho, J. L., ... Bonin, B. F. (2020). Effects of leaf removal on grape cluster architecture and control of Botrytis bunch rot in Sauvignon Blanc grapevines in Southern Brazil. Crop Protection, 131, 105079. DOI: https://doi.org/10.1016/j.cropro.2020.105079

Zhang, P., Wu, X., Needs, S., Liu, D., Fuentes, S., & Howell, K. (2017). The influence of apical and basal defoliation on the canopy structure and biochemical composition of Vitis vinifera cv. Shiraz grapes and wine. Frontiers in Chemistry, 5(48), 1-9. DOI: https://doi.org/10.3389/fchem.2017.00048

Zhuang, S., Tozzini, L., Green, A., Acimovic, D., & Howell, G. S. (2014). Impact of cluster thinning and basal leaf removal on fruit quality of Cabernet Franc (Vitis vinifera L.) grapevines grown in cool climate conditions. HortScience, 49(6), 750-756. DOI: https://doi.org/10.21273/HORTSCI.49.6.750

Zocche, R. G. S., Jacobs, S. A., Sampaio, N. V., Souza, V. Q., Carvalho, I. R., Nardino, M., … Rombaldi, C. V. (2017). Wines produced with 'Cabernet Sauvignon' grapes from the region of Bagé in the state of Rio Grande do Sul, Brazil. Pesquisa Agropecuária Brasileira, 52(5), 311-318. DOI: https://doi.org/10.1590/s0100-204x2017000500004

Published
2022-09-19
How to Cite
Silveira, J. M., Rombaldi, C. V., del Aguila, J. S., Gabbardo, M., & Cunha, W. M. da. (2022). Agronomic and physicochemical parameters of must and wine as a function of changes in ‘Cabernet Sauvignon’ grapevine canopy. Acta Scientiarum. Agronomy, 45(1), e56441. https://doi.org/10.4025/actasciagron.v45i1.56441
Section
Crop Production

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus