Low-cost system for multispectral image acquisition and its applicability to analysis of the physiological potential of soybean seeds
Abstract
The use of multispectral images has great potential to assess seed quality and represents a significant technological advance in the search for fast and non-destructive analysis techniques. However, the devices currently available are expensive. Thus, this study aimed to propose a low-cost method for acquisition and processing of multispectral images of soybean seeds and to evaluate their potential for rapid determination of seed physiological potential. The study was conducted in three steps: implementation of the multispectral image acquisition system, development of an algorithm for automatic image processing, and evaluation of the relationship between the data obtained through image analysis and the results of standard tests used to evaluate seed physiological potential. A total of 43 variables were assessed, eight related to seed physiological potential (germination and vigor) and 35 obtained from the analysis of the multispectral images. Of the variables obtained from multispectral images, 21 were related to pixel values in the images in the different bands evaluated (green, red, and infrared) and 14 associated with seed morphometric characteristics. The proposed system is efficient in obtaining multispectral images and the algorithm developed was efficient to extract morphometric characteristics and pixel information from the images. The parameters obtained from the NIR spectrum region showed a good relationship with the physiological potential of soybean seeds.
Downloads
References
Agelet, L. E., & Hurburgh, C. R. (2014). Limitations and current applications of Near Infrared Spectroscopy for single seed analysis. Talanta, 121, 288-299. DOI: https://doi.org/10.1016/j.talanta.2013.12.038
Ambrose, A., Kandpal, L. M., Kim, M. S., Lee, W. H., & Cho, B. K. (2016). High speed measurement of corn seed viability using hyperspectral imaging. Infrared Physics and Technology, 75, 173-179. DOI: https://doi.org/10.1016/j.infrared.2015.12.008
Baek, I., Kusumaningrum, D., Kandpal, L. M., Lohumi, S., Mo, C., Kim, M. S., & Cho, B. K. (2019). Rapid measurement of soybean seed viability using kernel-based multispectral image analysis. Sensors, 19(2), 1-16. DOI: https://doi.org/10.3390/s19020271
Baek, J., Lee, E., Kim, N., Kim, S. L., Choi, I., Ji, H., … Kim, K.-H. H. (2020). High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors, 20(1), 1-9. DOI: https://doi.org/10.3390/s20010248
Bazoni, C. H. V., Ida, E. I., Barbin, D. F., & Kurozawa, L. E. (2017). Near-infrared spectroscopy as a rapid method for evaluation physicochemical changes of stored soybeans. Journal of Stored Products Research, 73, 1-6. DOI: https://doi.org/10.1016/j.jspr.2017.05.003
Bewley, J. D., & Nonogaki, H. (2017). Seed maturation and germination. In Reference Module in Life Sciences (p. 623–626). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-809633-8.05092-5
Boelt, B., Shrestha, S., Salimi, Z., Jørgensen, J. R., Nicolaisen, M., & Carstensen, J. M. (2018). Multispectral imaging – a new tool in seed quality assessment? Seed Science Research, 28(3), 222-228. DOI: https://doi.org/10.1017/S0960258518000235
Brasil. (2009). Regras para análise de sementes. Brasília, DF: MAPA/ACS.
Dumont, J., Hirvonen, T., Heikkinen, V., Mistretta, M., Granlund, L., Himanen, K., … Keinänen, M. (2015). Thermal and hyperspectral imaging for Norway spruce (Picea abies) seeds screening. Computers and Electronics in Agriculture, 116(C), 118-124. DOI: https://doi.org/10.1016/j.compag.2015.06.010
ElMasry, G., Mandour, N., Al-Rejaie, S., Belin, E., & Rousseau, D. (2019). Recent applications of multispectral imaging in seed phenotyping and quality monitoring-An overview. Sensors, 19(5), 1-32. DOI: https://doi.org/10.3390/s19051090
Food and Agriculture Organization [FAO]. 2019. FAOSTAT Food and agriculture data: crops. Rome, IT: FAO. Retrieved on Nov. 10, 2020 from http://www.fao.org/faostat/en/
Guo, J., You, T., Prisecaru, V., Costescu, D., Nelson, R. L., & Baianu, I. C. (2011). NIR calibrations for soybean seeds and soy food composition analysis total carbohydrates, oil, proteins and water contents. Nature Precedings, 1-49. DOI: https://doi.org/10.1038/npre.2011.6611.1
Huang, J., & Yu, C. (2019). Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fiber. Textile Research Journal, 89(23–24), 4875-4883. DOI: https://doi.org/10.1177/0040517519843464
Krzyananowski, F. C., Vieira, R. D., & França-Neto, J. B. (1999). Vigor de sementes: conceitos e testes. Londrina, PR: Abrates.
Kusumaningrum, D., Lee, H., Lohumi, S., Mo, C., Kim, M. S., & Cho, B. K. (2018). Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy. Journal of the Science of Food and Agriculture, 98(5), 1734–1742. DOI: https://doi.org/10.1002/jsfa.8646
Lin, P., Xiaoli, L., Li, D., Jiang, S., Zou, Z., Lu, Q., & Chen, Y. (2019). Rapidly and exactly determining postharvest dry soybean seed quality based on machine vision technology. Scientific Reports, 9(1), 1-11. DOI: https://doi.org/10.1038/s41598-019-53796-w
Mahajan, S., Mittal, S. K., & Das, A. (2018). Machine vision based alternative testing approach for physical purity, viability and vigour testing of soybean seeds (Glycine max). Journal of Food Science and Technology, 55, 3949-3959. DOI: https://doi.org/10.1007/s13197-018-3320-x
Medeiros, A. D., Pinheiro, D. T., Xavier, W. A., Silva, L. J., & Dias, D. C. F. S. (2020a). Quality classification of Jatropha curcas seeds using radiographic images and machine learning. Industrial Crops and Products, 146, 112162. DOI: https://doi.org/10.1016/j.indcrop.2020.112162
Medeiros, A. D., Silva, L. J., Silva, J. M., Dias, D. C. F. S., & Pereira, M. D. (2020b). IJCropSeed: An open-access tool for high-throughput analysis of crop seed radiographs. Computers and Electronics in Agriculture, 175, 105555. DOI: https://doi.org/10.1016/j.compag.2020.105555
Moreano, T. B., Marques, O. J., Braccini, A. L., Scapim, C. A., França-Neto, J. B., & Krzyzanowski, F. C. (2018). Evolution of the physical and physiological quality of soybean seeds during processing. Journal of Seed Science, 40(3), 313-322. DOI: https://dx.doi.org/10.1590/2317-1545v40n3198414
Neve, J. M. G., Oliveira, J. A., Silva, H. P., Reis, R. G. E., Zuchi, J., & Vieira, A. R. (2016). Quality of soybean seeds with high mechanical damage index after processing and storage. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(11), 1025-1030. DOI: https://dx.doi.org/10.1590/1807-1929/agriambi.v20n11p1025-1030
R Core Team. (2019). R: A language and environment for statistical computing. Vienna, AT: R Development Core Team. Retrieved on Nov. 10, 2020 from https://doi.org/http://www.R-project.org
Rodrigues, M., Gomes-Junior, F. G., & Marcos-Filho, J. (2020). Vigor-S: System for automated analysis of soybean seed vigor. Journal of Seed Science, 42, 1-12. DOI: https://doi.org/10.1590/2317-1545v42237490
Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 1-26. DOI: https://doi.org/10.1186/s12859-017-1934-z
Sau, S., Ucchesu, M., D’hallewin, G., & Bacchetta, G. (2019). Potential use of seed morpho-colourimetric analysis for Sardinian apple cultivar characterisation. Computers and Electronics in Agriculture, 162, 373–379. DOI: https://doi.org/10.1016/j.compag.2019.04.027
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. DOI: https://doi.org/10.1038/nmeth.2089
Spears, J. F., TeKrony, D. M., & Egli, D. B. (1997). Temperature during seed filling and soybean seed germination and vigour. Seed Science & Technology, 25(2), 233-244.
TeKrony, D. M., Egli, D. B., & Phillips, A. D. (1980). Effect of field weathering on the viability and vigor of soybean seed. Agronomy Journal, 72(5), 749-753. DOI: https://doi.org/10.2134/agronj1980.00021962007200050014x
Xia, Y., Xu, Y., Li, J., Zhang, C., & Fan, S. (2019). Recent advances in emerging techniques for non-destructive detection of seed viability: A review. Artificial Intelligence in Agriculture, 1, 35-47. DOI: https://doi.org/10.1016/j.aiia.2019.05.001
Zhu, S., Chao, M., Zhang, J., Xu, X., Song, P., Zhang, J., & Huang, Z. (2019). Identification of soybean seed varieties based on hyperspectral imaging technology. Sensors, 19(23), 1-15. DOI: https://doi.org/10.3390/s19235225
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.