Selection of Theobroma grandiflorum clones adapted to agroforestry systems using an additive index
Abstract
In fruit tree breeding, selection indices are used to identify the genotypes that combine desirable commercial and non-commercial characteristics. As Theobroma grandiflorum is generally cultivated in agroforestry systems (AFS), there is a need to develop cultivars that are adapted to such environments. In this study, the objective was to select the most promising genotypes for their future use in AFS based on the additive index, a pioneering method for this crop. The trial was carried out for 12 years in an agroforestry system in the municipality of Tomé-Açu, Pará State, Brazil. The 16 evaluated clones were completely randomised with a variable number of repetitions. The average number of fruits produced as well as the morpho-agronomic characteristics of the fruits were analysed. Mixed linear models were used to estimate the components of variance and predict the genotypic values. The genetic correlation between the variables was estimated, and the selection of genotypes was based on the additive index, with a positive orientation of all variables except the thickness of the fruit shells and the weight of the fruits. Clones 42, 44, 46, 47, 57, 61, and 64 performed well for all the analysed variables, resulting in a selection gain of 7.3% and low incidence rates of witches’ broom disease. These genotypes can be made available to producers in the form of clones for use in AFS and can further be included in future hybridisations in T. grandiflorum breeding.
Downloads
References
Albuquerque, P. S. B., Silva, S. D. V. M., Luz, E. D. M. N., Pires, J. L., Vieira, A. M. C., Demétrio, C. G. B., ... Figueira, A. (2010). Novel sources of witches’ broom resistance (causal agent Moniliophthora perniciosa) from natural populations of Theobroma cacao from the Brazilian Amazon. Euphytica, 172(1), 125-138. DOI: https://doi.org/10.1007/s10681-009-0068-4
Alcoforado, A. T., Pedrozo, C. A., Mayer, M. M., & Lima-Primo, H. E. (2019). Repeatability of morpho-agronomic characters of Theobroma grandiflorum fruits. Revista Brasileira de Fruticultura, 41(2), 1-7. DOI: https://doi.org/10.1590/0100-29452019142
Alves, R. M., Sebbenn, A. M., Artero, A. S., Clement, C., & Figueira, A. (2007). High levels of genetic divergence and inbreeding in populations of cupuassu (Theobroma grandiflorum). Tree Genetics & Genomes, 3(4), 289-298. DOI: https://doi.org/10.1007/s11295-006-0066-9
Alves, R. M. (2012). Implantação de um pomar de cupuaçuzeiro com a cultivar BRS Carimbó. Brasília, DF: Embrapa.
Alves, R. M., Chaves, S. F. S., Gama, M. A. P., Pedroza Neto, J. L., & Santos, T. G. D. (2020). Simultaneous selection of cupuassu tree and Brazilian mahogany genotypes in an agroforestry system in Pará state, Brazil. Acta Amazonica, 50(3), 183-191. DOI: https://doi.org/10.1590/1809-4392202000711
Alves, R. S., Teodoro, P. E., Peixoto, L. A., Silva, L. A., Laviola, B. G., Resende, M. D. V., & Bhering, L. L. (2019). Multiple-trait BLUP in longitudinal data analysis on Jatropha curcas breeding for bioenergy. Industrial Crops and Products, 130, 558-561. DOI: https://doi.org/10.1016/j.indcrop.2018.12.019
Baron, D., Amaro, A. C. E., Pina, A., & Ferreira, G. (2019). An overview of grafting re-establishment in woody fruit species. Scientia Horticulturae, 243, 84-91. DOI: https://doi.org/10.1016/j.scienta.2018.08.012
Bolfe, E. D., & Batistella, M. (2011). Análise florística e estrutural de sistemas silviagrícolas em Tomé-Açu, Pará. Pesquisa Agropecuária Brasileira, 46(10), 1139-1147. DOI: https://doi.org/10.1590/S0100-204X2011001000004
Céron-Rojas, J. J., & Crossa, J. (2018). Linear selection indices in modern plant breeding. Cham, SW: Springer Nature. DOI: https://doi.org/10.1007/978-3-319-91223-3
Costa, R. S., Pinheiro, W. B. S., Arruda, M. S. P., Costa, C. E. F., Converti, A., Costa, R. M. R., & Silva Júnior, J. O. C. (2020). Thermoanalytical and phytochemical study of the cupuassu (Theobroma grandiflorum Schum.) seed by-product in different processing stages. Journal of Thermal Analysis and Calorimetry, 147, 275-284. DOI: https://doi.org/10.1007/s10973-020-10347-0
Crété, R., Pires, R. N., Barbetti, M. J., & Renton, M. (2020). Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains. Scientific Reports, 10(1), 1-18. DOI: https://doi.org/10.1038/s41598-020-76788-7
Doaré, F., Ribeyre, F., & Cilas, C. (2020). Genetic and environmental links between traits of cocoa beans and pods clarify the phenotyping processes to be implemented. Scientific Reports, 10(1), 1-6. DOI: https://doi.org/10.1038/s41598-020-66969-9
Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1-18. DOI: https://doi.org/10.18637/jss.v048.i04
Faria, J. V., Valido, I. H., Paz, W. H., Silva, F. M., Souza, A. D., Acho, L. R., ... Bataglion, G. A. (2020). Comparative evaluation of chemical composition and biological activities of tropical fruits consumed in Manaus, central Amazonia, Brazil. Food Research International, 139, 109836. DOI: https://doi.org/10.1016/j.foodres.2020.109836
Genovese, M. I., & Lannes, S. C. D. S. (2009). Comparison of total phenolic content and antiradical capacity of powders and “chocolates" from cocoa and cupuassu. Food Science and Technology, 29(4), 810-814. DOI: https://doi.org/10.1590/S0101-20612009000400017
Homma, A. K. O. (2014). Setenta anos de pesquisa agropecuária na Amazônia: contribuições da Embrapa para fruticultura tropical. In A. K. O. Homma (Ed.), Extrativismo vegetal na Amazônia: história, ecologia, economia e domesticação (p. 377-403). Belém, PA: Embrapa Amazonia Oriental.
Jaimez, R. E., Vera, D. I., Mora, A., Loor, R. G., & Bailey, B. A. (2020). A disease and production index (DPI) for selection of cacao (Theobroma cacao) clones highly productive and tolerant to pod rot diseases. Plant Pathology, 69(4), 698-712. DOI: https://doi.org/10.1111/ppa.13156
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., ... Van Der Schrier, G. (2016). Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Scientific Reports, 6(1), 1-7. DOI: https://doi.org/10.1038/srep33130
Lima, A. K. O., Vasconcelos, A. A., Sousa Júnior, J. J. V., Escher, S. K. S., Nakazato, G., & Taube Júnior, P. S. (2019). Green synthesis of silver nanoparticles using Amazon fruits. International Journal of Nanoscience and Nanotechnology, 15(3), 179-188.
Maia, M. C. C., Resende, M. D. V., Oliveira, L. C., Álvares, V. S., Maciel, V. T., & Lima, A. C. (2011). Seleção de clones experimentais de cupuaçu para características agroindustriais via modelos mistos. Revista Agro@mbiente On-line, 5(1), 35-43. DOI: https://doi.org/10.18227/1982-8470ragro.v5i1.388
Mournet, P., Albuquerque, P. S. B., Alves, R. M., Silva-Werneck, J. O., Rivallan, R., Marcellino, L. H., & Clément, D. (2020). A reference high-density genetic map of Theobroma grandiflorum (Willd. ex Spreng) and QTL detection for resistance to witches’ broom disease (Moniliophthora perniciosa). Tree Genetics & Genomes, 16(6), 89. DOI: https://doi.org/10.1007/s11295-020-01479-3
Meinhardt, L. W., Rincones, J., Bailey, B. A., Aime, M. C., Griffith, G. W., Zhang, D., & Pereira, G. A. (2008). Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what's new from this old foe? Molecular Plant Pathology, 9(5), 577-588. DOI: https://doi.org/10.1111/j.1364-3703.2008.00496.x
Mustiga, G. M., Gezan, S. A., Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quirós, A., & Motamayor, J. C. (2018). Phenotypic description of Theobroma cacao L. for yield and vigor traits from 34 hybrid families in Costa Rica based on the genetic basis of the parental population. Frontiers in Plant Science, 9(808), 1-17. DOI: https://doi.org/10.3389/fpls.2018.00808
Pará. (2020). Secretaria de Estado de Desenvolvimento Agropecuário e da Pesca. Indicadores agropecuários. Retrieved on Dec. 08, 2020 from http://www.sedap.pa.gov.br/content/cupua%C3%A7u
Pereira, A. L., Abreu, V. K., & Rodrigues, S. (2018). Cupuassu—Theobroma grandiflorum. In S. Rodrigues, E. O. Silva, & E. Brito (Eds.), Exotic fruits (p. 159-162). Amsterdam, NT: Elsevier Inc.
Pereira, M. G., Poltronieri, T. P. S., Pereira, T. N. S., Ramos, H. C. C., Catarina, R. S., Vettorazzi, J. C. F., ... Ferregueit, G. A. (2019). Twenty-two-year papaya breeding program: from breeding strategy establishment to cultivar development. Functional Plant Breeding Journal, 1(2), 9-27. DOI: https://doi.org/10.35418/2526-4117/v1n2a2
R Core Team. (2020). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on Dec. 08, 2020 from https://www.R-project.org/.
Resende, M. D. V. (2002). Genética biométrica e estatística no melhoramento de plantas perenes. Brasília, DF: Embrapa Informação Tecnológica.
Resende, M. D. V., Silva, F. F., & Azevedo, C. F. (2014). Estatística matemática, biométrica e computacional: Modelos mistos, multivariados, categóricos e generalizados (REML/BLUP), inferência bayesiana, regressão aleatória, seleção genômica, QTL, GWAS, estatística espacial e temporal, competição, sobrevivência. Viçosa, MG: Editora UFV.
Resende, M. D. V. (2016). Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330-339. DOI: https://doi.org/10.1590/1984-70332016v16n4a49
Salgado, J. M., Rodrigues, B. S., Donado-Pestana, C. M., Dias, C. T. S., & Morzelle, M. C. (2011). Cupuassu (Theobroma grandiflorum) peel as potential source of dietary fiber and phytochemicals in whole-bread preparations. Plant Foods for Human Nutrition, 66(4), 384-390. DOI: https://doi.org/10.1007/s11130-011-0254-0
Schmidt, P., Hartung, J., Bennewitz, J., & Piepho, H. P. (2019). Heritability in plant breeding on a genotype-difference basis. Genetics, 212(4), 991-1008. DOI: https://doi.org/10.1534/genetics.119.302134
Setyawan, B., Taryono, T., & Mitrowihardjo, S. (2016). Determination of selection index of cocoa (Theobroma cacao L.) yield traits using regression methods. Pelita Perkebunan, 32(2), 101-108. DOI: https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v32i2.229
Silva, A. R., Malafaia, G., & Menezes, I. P. P. (2017). Biotools: an R function to predict spatial gene diversity via an individual-based approach. Genetics and Molecular Research, 16(2), 1-6. DOI: https://doi.org/10.4238/gmr16029655
Silva, T. P. D., Vidal Neto, F. D. C., & Vale, J. C. (2017). Prediction of genetic gains with selection between and within S2 progenies of papaya using the REML/Blup analysis. Pesquisa Agropecuária Brasileira, 52(12), 1167-1177. DOI: https://doi.org/10.1590/s0100-204x2017001200005
Silva, J. O. C., Bruckner, C. H., Carneiro, P. C. S., Resende, M. D. V., Alves, R. S., & Silva D. F. P. (2020). Estimates of genetic parameters, genetic variability, and selection in the S1 generation of peach. Ciência Rural, 50(10), 1-7. DOI: https://doi.org/10.1590/0103-8478cr20190976
Souza, A. G. C. (2007). Boas práticas agrícolas da cultura do cupuaçuzeiro. Manaus, AM: Embrapa Amazônia Ocidental.
Venturieri, G. A. (2011). Flowering levels, harvest season and yields of cupuassu (Theobroma grandiflorum). Acta Amazonica, 41(1), 143-152. DOI: https://doi.org/10.1590/S0044-59672011000100017
Yamamoto, E. L. M., Holanda, I. S. A., Morais, P. L. D., Nunes, G. H. S., Antonio, R. P., Lemos, M. S., & Silva, J. R. (2017). Selection of umbu-cajazeira clones using the REML/BLUP. Revista Brasileira de Ciências Agrárias, 12(4), 496-502. DOI: https://doi.org/10.5039/agraria.v12i4a5485
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.