Yield prediction in banana (Musa sp.) using STELLA model
Abstract
To overcome the challenges encountered in banana cultivation, such as the high cost of production due to high water consumption by the banana plant, efficient management practices are being adopted. The use of agricultural forecasting techniques is an alternative that has been gaining attention in rural areas. One way to manage and improve agricultural productivity is the use of technologies that allow the monitoring of production. The implementation of computational tools as software to aid processes, such as irrigation management, is gradually taking up space in the agricultural sector. In this light, herein, the present study aimed to develop a model using STELLA 8.0 software to estimate the growth and productivity of irrigated banana (Musa sp.). For this, the physiological processes and water demand were calculated using reference evapotranspiration (ET0) and culture evapotranspiration (ETc) in the first banana cycle for the climatic conditions of the Jaíba Project (Jaíba, Minas Gerais State, Brazil). The data of the climatic conditions were obtained from the National Institute of Meteorology. It was verified that the average monthly ET0 was 5.78 mm day-1. In addition, the water requirement of the plant corresponded to a blade equivalent to 65% of ET0. The verified productivity was 8.93 t ha-1, which is considered adequate for the simulated conditions. The model responded efficiently to the proposed application and was characterized as a prognostic tool of reality through simplified representation.
Downloads
References
Albuquerque, P. E. P. (2012). O Aplicativo Computacional “Irrigafácil” Implementado Via Web para o Manejo de Irrigação dos Campos Experimentais da Embrapa Milho e Sorgo. Sete Lagoas, MG: Embrapa Milho e Sorgo. Retrieved on April 30, 2017 from https://bitlybr.com/yPtPg
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements (Fao Irrigation Drainage paper, 56). Rome, IT: FAO.
Arnold, C. Y. (1959). The determination and significance of the base temperature in a linear heat unit system. Proceedings of the American Society for Horticultural Science, 74(1), 430-445.
Bernardo, S.; Mantovani, E. C.; Silva, D. D. & Soares, A. A. (2019). Manual de irrigação (9. ed.). Viçosa, MG: UFV.
Bernardo, S.; Soares, A. A. & Mantovani, E. C. (2008). Manual de irrigação (8. ed.). Viçosa, MG: UFV.
Bezerra, A. E., Oliveira, C. W., Neto, J. M. M., Silva, T. I., Meireles, A. C. M., & Santos, H. R. (2017). Eficiência do uso da água de irrigação no cultivo de banana (Musa sp. L.). Revista Brasileira de Agricultura Irrigada. 11(7), 1966-974. DOI: https://doi.org/0.7127/rbai.v11n700663
Bezerra, V. S., & Dias, J. S. A. (2009). Avaliação físico-química de frutos de bananeiras. Acta Amazonica, 39(2), 423-428.
Charles-Edwards, D. A. (1982). Physiological determinants of crop growth. Sydney, AU: Academic Press.
Christofidis, D. (2013). Água, irrigação e agropecuária sustentável. Revista de Política Agrícola, 22(1), 115-127.
Coelho, E. F. (2012). Irrigação da bananeira. Brasília, DF: Embrapa.
Coelho, E. F., Filho, M. A. C., & Oliveira, S. L. (2005). Agricultura irrigada: eficiência de irrigação e de uso de água. Bahia Agrícola, 7(1), 57-60.
FAO (2015). Climate change and food systems: global assessments and implications for food security and trade. Rome, IT: Food Agriculture Organization of the United Nations (FAO).
Figueiredo, F. P., Mantovani, E. C., Soares, A. A., Costa, l. C., Ramos, M. M., & Oliveira, F. G. (2006). Produtividade e qualidade da banana prata-anã, influenciada por lâminas de água, cultivada no Norte de Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, 10(4), 798-803.
Forrester, J. W. (1992). Policies, decisions and information-sources for modeling. European Journal of Operational Research, 59(1), 42-63. DOI: https://doi.org/10.1016/0377-2217(92)90006-U
Gonçalves, V. D., Nietsche, S., Pereira, M. C. T., Silva, S. O., Santos, T. M., Oliveira, J.R., ... Ruggiero, C. (2008). Avaliação das cultivares de bananeira Prata-Anã, ThapMaeo e Caipira em diferentes sistemas de plantio no Norte de Minas Gerais. Revista Brasileira de Fruticultura, 30(2), 371-376. DOI: https://doi.org/10.1590/S0100-29452008000200018
Isee Systems. (2017). Systems thinking in education. Retrieved on May 15, 2017 from https://www.iseesystems.com
Instituto Nacional de Meteorologia [INMET]. (2017). Estações Automáticas. Retrieved on Jan. 26, 2017 from http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesautomaticas
Jame, Y. W., & Cutforth, H. W. (1996). Crop growth models for decision support systems. Canadian Journal of Plant Science, 76(1), 9-19.
Kissel, E., van Asten, P., Swennen, R., Lorenzen, J., & Carpentier, S. C. (2015). Transpiration efficiency versus growth: Exploring the banana biodiversity for drought tolerance. Scientia Horticulturae, 185, 175-182. DOI: https://doi.org/10.1016/j.scienta.2015.01.035
Lakso, A. N., & Johnson, R. S. (1990). A simplified dry matter production model for apple using automatic programming simulation software. Acta Horticulturae, 276, 141-148. DOI: https://doi.org/10.17660/ActaHortic.1990.276.15
Melo, A. S., Fernandes, P. D., Sobral, L. F., Brito, M. E. B., & Dantas, J. D. M. (2010). Growth, biomass yield and photosynthetic efficiency of banana, under fertirrigation with nitrogen and potassium. Revista Ciência Agronômica, 1(3), 417-426. DOI: https://doi.org/10.1590/S1806-66902010000300014
Olivares, B. O., Araya-Alman, M., Acevedo-Opazo, C., Rey, J. C., Cañete-Salinas, P., Kurina, F. G., ... & Gómez, J. A. (2020). Relationship between soil properties and banana productivity in the two main cultivation areas in Venezuela. Journal of Soil Science and Plant Nutrition, 20, 2512-2524.
Ouyang, Y. (2008). Modeling the mechanisms for uptake and translocation of dioxane in a soil-plant ecosystem with STELLA. Journal of Contaminant Hydrology, 95(1-2), 17-29. DOI: https://doi.org/10.1016/j.jconhyd.2007.07.010
Ouyang, Y., Zhang, J., Leininger, T. D., & Frey, B. R. (2014). A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation. Journal of Environment Quality, 44(1), 200-209. DOI: https://doi.org/10.2134/jeq2014.01.0015
Pereira, M. C. T., Salomão, L. C. C., Silva, S. O., Sediyama, C. S., Couto, F. A. A., & Neto, S. P. S. (2000). Crescimento e produção de primeiro ciclo da bananeira ‘Prata Anã’(AAB) em sete espaçamentos. Pesquisa Agropecuária Brasileira, 35(7), 1377-1387. DOI: https://doi.org/10.1590/S0100-204X2000000700012
Robinson, J. C., & Saúco, V. G. (2010). Bananas and plantains: Crop production science in horticulture (2nd. ed.). Oxford, UK: CAB International.
Rodrigues, M. G. V., & Leite, M. A. V. (2008). Aspectos socioeconômicos da bananicultura. Informe Agropecuário, 29(245), 7-12.
Soltani, A., & Sinclair, T. R. (2012). Modeling physiology of crop development, growth and yield. Wallingford, UK: CABI.
Turner, D. W., & Fortescue, J. A. (2010). The physiology of banana (Musa spp.) fruit growth: factors that affect bunch iniation. In Reunión de la Associación para la Cooperación em Investigación y Desarrollo Integral de las Musáceas, Banano y plátano (p. 291-296). Medellin, CO: ACORBAT.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.