Bacillus amyloliquefaciens PKM16 acts as an antagonist of white mold and an inducer of defense enzymes in tomato plants
Abstract
This study aimed to investigate the potential of rhizobacteria isolated from tomato plants to control Sclerotinia sclerotiorum and induce the activity of pathogenesis-related enzymes in Micro-Tom tomato plants. Three rhizobacterial isolates were evaluated to determine the most efficient antagonist agent, which was later identified by gene sequencing as Bacillus amyloliquefaciens PKM16. The antagonistic effects of B. amyloliquefaciens against S. sclerotiorum were assessed in vivo and in vitro using live and autoclaved cultures at concentrations of 0% (control), 20%, 30%, and 40% (v/v). The residual effects of four treatments (20% live culture, 20% autoclaved culture, a Bacillus subtilis-based commercial product, and autoclaved distilled water) on tomato plants inoculated with S. sclerotiorum were determined. The same treatments were also used to assess the myceliogenic germination of sclerotia and induction of plant defense enzymes (peroxidase, catalase, polyphenol oxidase, phenylalanine ammonia-lyase, and β-1,3-glucanase) in tomato plants. The live culture had a residual effect for 4 days and inhibited sclerotial germination by approximately 30%. Furthermore, live and autoclaved bacterial growth cultures stimulated enzyme activity. Therefore, B. amyloliquefaciens PKM16 was antagonistic to S. sclerotiorum, effectively inhibiting mycelial growth and activating defense mechanisms in Micro-Tom tomato plants.
Downloads
References
Amorim, L., & Pascholati, S. F. (2018). Ciclo das Relações Patógeno-Hospedeiro. In L. Amorim, J. A. M. Rezende, & A. Bergamin Filho (Eds.), Manual de Fitopatologia: Princípios e conceitos (p. 46-68). Ouro Fino, MG: Editora Agronômica Ceres Ltda.
Amorim, L., Rezende, J. A. M., & Bergamin Filho, A. (2018). Manual de Fitopatologia: Princípios e conceitos (v. 1, 5. ed.). Ouro Fino, MG: Editora Agronômica Ceres Ltda.
Barros, D. C. M., Fonseca, I. C. B., Balbi-Peña, M. I., Pascholati, S. F., & Peitl, D. C. (2015). Biocontrol of Sclerotinia sclerotiorum and white mold of soybean using saprobic fungi from semi-arid areas of Northeastern Brazil. Summa Phytopathologica, 41(4), 251-255. DOI: http://doi.org/10.1590/0100-5405/2086
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
Braga Junior, G. M., Chagas Junior, A. F., Chagas, L. F. B., Carvalho Filho, M. R., Miller, L. O., & Santos, G. R. (2017). Controle biológico de fitopatógenos por Bacillus subtilis in vitro. Biota Amazônia, 7(3), 45-51. DOI: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v7n3p45-51
Carvalho, C. R. F., Ponciano, N. J., Souza, P. M., Souza, C. L. M., & Sousa, E. F. S. (2014). Viabilidade econômica e de risco da produção de tomate no município de Cambuci/RJ, Brasil. Ciência Rural,44(12), 2293-2299. DOI: http://dx.doi.org/10.1590/0103-8478cr20131570
Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R., … Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 140(1–2), 27-37. DOI: https://doi.org/10.1016/j.jbiotec.2008.10.011
Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in Microbiology, 6(780), 1-12. DOI: https://doi.org/10.3389/fmicb.2015.00780
Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma. III. Hyphal interactions. Transactions of the British Mycological Society, 57(3), 363-369. DOI: https://doi.org/10.1016/S0007-1536(71)80050-5
Duangmal, K., & Apenten, R. K. O. (1999). A comparative study of poliphenoloxidases from taro (Colocasiae sculenta) e potato (Solanum tuberosum var. Romano). Food Chemistry, 64(3), 351-359. DOI: https://doi.org/10.1016/S0308-8146(98)00127-7
Dudley, W. N., Wickham, R., & Coombs, N. (2016). An introduction to survival statistics: Kaplan-Meier analysis. Journal of the Advanced Practitioner in Oncology, 7(1), 91-100. DOI: http://dx.doi.org/10.6004/jadpro.2016.7.1.8
Furlani, A. C. F. A., Camargo, M., Panizzi, R. C., & Pereira, C. F. (2007). Atividade de células, filtrado e autoclavado de Bacillus spp. como bioagentes de controle de Colletotrichum acutatum. Científica, 35(2), 196-200.
Gerasimova, N. G., Pridvorova, S. M., & Ozeretskovskaya, O. L. (2005). Role of L phenylalanine ammonia-lyase in the induced resistance and susceptibility of potato plants. Applied Biochemistry and Microbiology, 41, 103 105. DOI: https://doi.org/10.1007/s10438-005-0019-3
Giorgio, A., Angelo, S., Pietro, C., & Nicola, S. I. (2015). Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Frontiers in Microbiology, 6(1056), 1-13. DOI: https://doi.org/10.3389/fmicb.2015.01056
Gomes, N. S. B., Grigoletti Junior, A., & Auer, C. G. (2001). Seleção de antagonistas para o controle de Cylindrocladium spathulatum em erva-mate. Boletim de Pesquisa Florestal, 43, 123-138.
Góth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2-3), 143-151. DOI: https://doi.org/10.1016/0009-8981(91)90067-m
Guevara-Avendaño, E., Bejarano-Bolívar, A. A., Kiel-Martínez, A. L., Ramírez-Vázquez, M., Méndez-Bravo, A., von Wobeser, E. A., … Reverchon, F. (2019). Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiological Research, 219, 74-83. DOI: https://doi.org/10.1016/j.micres.2018.11.009
Guevara-Avendaño, E., Carrillo, J. D., Ndinga-Muniania, C., Moreno,k., Méndez-Bravo, A., Guerrero-Analco, J. A., … Reverchon, F. (2018). Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie Van Leeuwenhoek, 111, 563-572. DOI: https://doi.org/10.1007/s10482-017-0977-5
Huang, C. N., Lin, C. P., Hsieh, F. C., Lee, S. K., Cheng, K. C., & Liu, C. T. (2016). Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars. World Journal of Microbiology and Biotechnology, 32(11), 183. DOI: https://doi.org/10.1007/s11274-016-2143-z
Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5, 299-314.
Instituto Brasileiro de Geografia e Estatística [IBGE]. (2021). Sistema de recuperação automática – Sidra. Levantamento Sistemático da Produção Agrícola. Retrieved on July 8, 2021 from https://sidra.ibge.gov.br/pesquisa/lspa/tabelas
Jaccoud Filho, D. S., Henneberg, L., & Grabicoski, E. M. G. (2017). Mofo Branco: Sclerotinia sclerotiorum. Ponta Grossa, PR: Toda Palavra.
Kabbage, M., Yarden, O., & Dickman, M. B. (2015). Pathogenic attributes of Sclerotinia sclerotiorum: Switching from a biotrophic to necrotrophic lifestyle. Plant Science, 233, 53-60. DOI: https://doi.org/10.1016/j.plantsci.2014.12.018
Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457-481. DOI: https://doi.org/10.2307/2281868
Lane, D., Denton-Giles, M., Derbyshire, M., & Kamphuis, L. G. (2019). Abiotic conditions governing the myceliogenic germination of Sclerotinia sclerotiorum allowing the basal infection of Brassica napu. Australasian Plant Pathology, 48(2), 85-91. DOI: https://doi.org/10.1007/s13313-019-0613-0
Li, Y., Gu, Y., Li, J., Xu, M., Wei, Q., & Wang, Y. (2015). Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in Microbiology, 6(883), 1-15. DOI: https://doi.org/10.3389/fmicb.2015.00883
Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., & Zhang, R. (2014). Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Frontiers in Microbiology, 5(2014) 636-645. DOI: https://doi.org/10.3389/fmicb.2014.00636
Locato, V., Pinto, M. C., Paradiso, A., & Gara, L. (2010). Reactive oxygen species and ascorbate glutathione interplay in signaling and stress responses. In S. D. Gupta (Ed.), Reactive oxygen species and antioxidants in higher plants (p. 178-203). Enfield, UK: Science Publishers.
Lusso, M. F. G., & Pascholati, S. F. (1999). Activity and isoenzymatic pattern of soluble peroxidases in maize tissues after mechanical injury or fungal inoculation. Summa Phytopathologica, 25(3), 244-249.
Maciel, C. G., Walker, C., Muniz, M. F. B., & Araujo, M. M. (2014). Antagonismo de Trichoderma spp. e Bacillus subtilis (UFV3918) a Fusarium sambucinum em Pinus elliottii engelm. Revista Árvore, 38(3), 505-512. DOI: http://dx.doi.org/10.1590/S0100-67622014000300013
Marcuzzo, L. L., & Schuller, A. (2014). Sobrevivência e viabilidade de escleródios de Sclerotium rolfsii no solo. Summa Phytopathologica, 40(3), 281-283. DOI: https://doi.org/10.1590/0100-5405/1951
Mariano, R. L. R. (1993). Métodos de seleção "in vitro" para controle microbiológico. Revisão Anual de Patologia de Plantas, 1, 369-409.
Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A., … Levy, A. (1997). A new model system for tomato genetics. The Plant Journal, 12(6), 1465-1472. DOI: https://doi.org/10.1046/j.1365-313x.1997.12061465.x
Méndez-Bravo, A., Cortazar-Murillo, E. M., Guevara-Avendaño, E., Ceballos-Luna, O., Rodríguez-Haas, B., Kiel-Martínez, A. L., … Reverchon, F. (2018). Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS ONE, 13(3), 1-18. DOI: https://doi.org/10.1371/journal.pone.0194665
Michereff, S. J., Silveira, N. S. S., & Mariano, R. L. R. (1994). Antagonismo de bactérias sobre Colletotrichum graminicola e potencial de biocontrole da antracnose do sorgo. Fitopatologia Brasileira, 19(4), 541-545.
Napoleao, R., Nasser, L., Lopes, C., & Cafe Filho, A. (2006). Neon-S, novo meio para detecção de Sclerotinia sclerotiorum em sementes. Summa Phytopathologica, 32(2), 180-182. DOI: https://doi.org/10.1590/S0100-54052006000200014
Oliveira, M. D. M., Varanda, C. M. R., & Félix MRF (2016). Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters, 15, 152-158. DOI: https://doi.org/10.1016/j.phytol.2015.12.011
Pascholati, S. F., & Dalio, R. J. D. (2018). Fisiologia do parasitismo: como as plantas se defendem dos patógenos. In L. Amorim, J. A. M. Rezende, & A. Bergamin Filho (Eds.), Manual de Fitopatologia: Princípios e conceitos (p. 424-450). Ouro Fino, MG: Editora Agronômica Ceres Ltda.
R Core Team (2020). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on May 10, 2021 from https://www.R-project.org/
Rabinovitch, L., & Oliveira, E. J. (2015). Coletânea de procedimentos técnicos e metodologias empregadas para o estudo de Bacillus e gêneros esporulados aeróbios correlatos. Rio de Janeiro, RJ: Montenegro Comunicação.
Reczek, C. R., & Chandel, N. S. (2015). ROS-dependent signal transduction. Current Opinion in Cell Biology, 33, 8-13. DOI: https://doi.org/10.1016/j.ceb.2014.09.010
Reis, A., Costa, H., & Lopes, C. A. (2007). Epidemiologia e manejo do mofo-branco em hortaliças. Brasília, DF: Embrapa Hortaliças.
Rocha, D. J. A., & Moura, A. B. (2013). Biological control of tomato wilt caused by Ralstonia solanacearum and Fusarium oxysporum f. sp. lycopersici by rhizobacteria. Tropical Plant Pathology, 38(5), 423-430. DOI: https://doi.org/10.1590/S1982-56762013005000025
Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilizationon the expression of slow mildewing resistance in knox wheat. Phytopathology, 67, 1051-1056. DOI: https://doi.org/10.1094/Phyto-67-1051
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 12, 1-26. DOI: http://dx.doi.org/10.1155/2012/217037
Singh, D., Yadav, D. K., Chaudhary, G., Rana, V. S., & Sharma, R. K. (2016). Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. Journal of Plant Pathology & Microbiology, 7(1), 1-6. DOI: http://dx.doi.org/10.4172/2157-7471.1000327
Stangarlin, J. R., Kuhn, O. J., Toledo, M. V., Portz, R. L., Schwan-Estrada, K. R. F., & Pascholati, S. F. (2011). A defesa vegetal contra fitopatógenos. Scientia Agraria Paranaensis, 10(1), 18-46. DOI: http://dx.doi.org/10.1818/sap.v10i1.5268
Toledo, D. S., Costa, C. A., Bacci, L., Fernandes, L. A., & Souza, M. F. (2011). Production and quality of tomato fruits under organic management. Horticultura Brasileira, 29(2), 253-257. DOI: https://doi.org/10.1590/S0102-05362011000200022
Tománková, K., Luhová, L., Petrivalský, M., Peè, P., & Lebeda, A. (2006). Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiological and Molecular Plant Pathology, 68(1-3), 22-32. DOI: https://doi.org/10.1016/j.pmpp.2006.05.005
Umesha, S. (2006). Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica, 34(1), 68-71. DOI: https://doi.org/10.1007/BF02981341
Vieira, B. S., Vieira, H. M. P., Sousa, L. A., & Mendonça, K. D. R. (2016). Potencial antagonístico de Bacillus subtilis (bsv-05) contra os patógenos radiculares do feijoeiro: Fusarium spp., Macrophomina phaseolina e Rhizoctonia solani. Ciência Agrícola, 14(1), 59-66. DOI: https://doi.org/10.28998/rca.v14i1.2333
Vinodkumar, S., Nakkeeran, S., Renukadevi, P., & Malathi, V. G. (2017). Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Frontiers in Microbiology, 8(446), 1-13. DOI: https://doi.org/10.3389/fmicb.2017.00446
Vogelsang, R., & Barz, W. (1993). Purification, characterization and differential hormonal regulation of a β-1,3-glucanase and chitinases from chickpea (Cicerarientinum L.). Planta, 189, 60-69. DOI: https://doi.org/10.1007/bf00201344
Yarzabal, L., & Chica, E. J. (2019). Role of rhizobacterial secondary metabolites in crop protection against agricultural pests and diseases. In V. K. Gupta, & A. Pandey (Eds.), New and future developments in microbial biotechnology and bioengineering: microbial secondary metabolites biochemistry and applications (p. 31-53). Amsterdam, NT: Elsevier.
Yuan, Y. J., Li, C., Hu, Z. D., & Wu, J. C. (2002). A double oxidative burst for taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium oxysporum. Enzyme and Microbial Technology, 30(6), 774-778. DOI: http://dx.doi.org/10.1016/S0141-0229(02)00057-1
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 88882.344559/2019-01 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico