Physiological responses of oregano under different water management and application of fermented bokashi compost

Keywords: organic fertilization; Origanum vulgare L.; water management.

Abstract

Growing conditions such as water supply and soil fertility influence oregano morphological development and physiological responses. Our study aimed to analyse the physiological responses of oregano plants grown under different water conditions and bokashi application rates. The experiment was carried out in a greenhouse under a randomized block design and a 3 x 4 factorial scheme. Treatments encompassed three water replacement levels (60, 80, and 100% crop evapotranspiration - ETc) and four bokashi rates (0, 100, 200, and 300 g m-2), with five replications each. Oregano seedlings were transplanted and grown in a spacing of 0.3 m between plants and 1 m between bed rows. After 60 days, treatments were evaluated for photosynthetic rate (A), stomatal conductance (Gs), internal CO2 rate (Ci), transpiration (E), and water-use efficiency (WUE). Data underwent variance analysis by F-teste, multivariate analysis, and Pearson's linear correlation. Oregano physiological responses were significantly influenced by water replacement level and the application rate of fermented bokashi compost. The multivariate analysis allowed us to analyse the interaction effect between water replacement level and bokashi rate on photosynthesis, stomatal conductance, internal CO2, and transpiration.

Downloads

Download data is not yet available.

References

Alvarenga, C. B., Teixeira, M. M., Zolnier, S., Cecon, P. R., Siqueira, D. L., Rodriguês, D. E., ... Rinaldi, P. C. N. (2014). Efeito do déficit de pressão de vapor d’água no ar na pulverização hidropneumática em alvos artificiais. Bioscience Journal, 30(1), 182-193.

Alvarez, H. R., Quilaleo, M. E., Mazzoni, A. O., & Ridiero, E. L. (2019). Experiencias de cultivo de azafrán y orégano en la línea sur de Rio Negro. Presencia, 30(72), 27-31.

Anhar, A., Junialdi, R., Zein, A., Advinda, L., & Leilani, I. (2018). Growth and Tomato Nutrition Content with Bandotan (Ageratum conyzoides L) Bokashi Applied. IOP Conference Series: Materials Science and Engineering, 335, 1-9. DOI: https://doi.org/10.1088/1757-899X/335/1/012017

Bell, J. M., Schwartz, R. C., Mcinnes, K. J., Howell, T. A., & Morgan, C. L. (2020). Effects of irrigation level and timing on profile soil water use by grain sorghum. Agricultural Water Management, 232, 1-10. DOI: https://doi.org/10.1016/j.agwat.2020.106030

Cortés-Tello, K., & Jaramillo-López, P. F. (2020). Fermented soil amendments made from stabilized biosolids and fly ash improve maize (Zea mays. L.) nutrition and growth. International Journal of Recycling of Organic Waste in Agriculture, 9(1), 85-98. DOI: https://doi.org/10.30486/ijrowa.2020.671671

Ferreira, D. F. (2019). SISVAR: a computer analysis system to fixed effects split-plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. DOI: https://doi.org/10.28951/rbb.v37i4.450

Hancioglu, N. E., Kurunc, A., Tontul, I., & Topuz, A. (2021). Growth, water use, yield and quality parameters in oregano affected by reduced irrigation regimes. Journal of the Science of Food and Agriculture, 101(3), 952-959. DOI: https://doi.org/10.1002/jsfa.10703

Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269. DOI: https://doi.org/10.1126/science.aaz7614

Jardim, A. M. R. F., Silva, T. G. F., Souza, L. S. B., Alves, H. K. M. N., Araújo, J. F. N., Silva, G. I. N., & Silva, J. O. N. (2019). Dinâmica da água no solo com cultivo de palma forrageira sob quatro sistemas de plantio. Agrometeoros, 27(2), 357-365. DOI: https://doi.org/10.31062/agrom.v27i2.26446

Kaushal, M., & Wani, S. P. (2016). Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems & Environment, 231, 68-78. DOI: https://doi.org/10.1016/j.agee.2016.06.031

Lasmini, S. A., Nasir, B., Hayati, N., & Edy, N. (2018). Improvement of soil quality using bokashi composting and NPK fertilizer to increase shallot yield on dry land. Australian Journal of Crop Science, 12(11), 1743-1749. DOI: https://doi.org/10.21475/ajcs.18.12.11. p.1435

Maass, V., Cespedes, C., & Cardenas, C. (2020). Effect of bokashi improved with rock phosphate on parsley cultivation under organic greenhouse management. Chilean Journal of Agricultural Research, 80(3), 444-451. DOI: https://doi.org/10.4067/S0718-58392020000300444

Olle, M. (2020). Review: Bokashi technology as a promising technology for crop production in Europe. The Journal of Horticultural Science and Biotechnology, 96(2), 145-152. DOI: https://doi.org/10.1080/14620316.2020.1810140

Oliveira, A. K. M., & Gualtieri, S. C. J. (2017). Trocas gasosas e grau de tolerância ao estresse hídrico induzido em plantas jovens de Tabebuia aurea (paratudo) submetidas a alagamento. Ciência Florestal, 27(1), 181-191. DOI: https://doi.org/10.5902/1980509826457

Oliveira, V. C., Santos, A. R., Souza, G. S., & Santos, R. M. (2017). Physiological responses of orégano plants (Origanum vulgare L.) cultivated undeer colored meshes and with organic fertilizers. Revista Colombiana de Ciencias Hortícolas, 11(2), 75-91. DOI: https://doi.org/10.17584/rcch.2017v11i2.7591

Oniga, H., Puscas, C., Silaghi-Dumitrescu, R., Olah, N., Sevastre, B., Marica, R., … Hanganu, D. (2018). Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Molecules, 23(8), 1-14. DOI: https://doi.org/10.3390/molecules23082077

Peloso, A. F., Tatagiba, S. D., Reis, E. F., Pezzopane, J. E. M., & Amaral, J. F. T. (2017). Limitações fotossintéticas em folhas de cafeeiro arábica promovidas pelo déficit hídrico. Coffee Science, 12(3), 389-399. DOI: https://doi.org/10.25186/cs.v12i3.1314

Pezzani, R., Vitalini, S., & Iriti, M. (2017). Bioactivities of Origanum vulgare L.: an update. Phytochemistry Reviews, 16, 1253-1268. DOI: https://doi.org/10.1007/s11101-017-9535-z

Quiroz, M., & Céspedes, C. (2019). Bokashi as an amendment and source of nitrogen in sustainable agricultural systems: A review. Journal of Soil Science and Plant Nutrition, 19(1), 237-248. DOI: https://doi.org/10.1007/s42729-019-0009-9

Santos, C. C., Bernardes, R. S., Goelzer, A., Geist, M. L., Vieira, M. C., & Zárate, N. A. H. (2019). Bokashi em mudas de Campomanesia adamantium (Cambess.) O. Berg: aspectos morfométricos e fotoquímicos. Nativa: Pesquisas Agrárias e Ambientais, 7(3), 239-243. DOI: https://doi.org/10.31413/nativa.v7i3.6772

Santos, C. C., Vieira, M. C., Zárate, N. A. H., Carnevali, T. O., & Gonçalves, W. V. (2020). Organic residues and bokashi influence in the growth of Alibertia edulis. Floresta e Ambiente, 27(1). DOI: https://doi.org/10.1590/2179-8087.103417

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. Á., Lumbreras, J. F., Coelho, M. R., ... Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos (5. ed.). Brasília, DF: Embrapa.

Shin, K., Diepen, G., Blok, W., & Bruggen, A. H. C. (2017). Variability of effective micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens. Crop Protection, 99, 168-176. DOI: https://doi.org/10.1016/j.cropro.2017.05.025

Sinclair, T. R., Devi, J., Shekoofa, A., Choudhary, S., Sadok, W., Vadez, V., … Rufty, T. (2017). Limited-transpiration response to high vapor pressure deficit in crop species. Plant Science, 260, 109-118. DOI: https://doi.org/10.1016/j.plantsci.2017.04.007

Singh, M., Ali, A. A., & Irfan Qureshi, M. (2017). Unravelling the impact of essential mineral nutrients on active constituents of selected medicinal and aromatic plants. In M. Naeem, A. Ansari, & S. Gill (Eds.), Essential plant nutrients. New York, NY: Springer. DOI: https://doi.org/10.1007/978-3-319-58841-4_9

Siqueira, A. P. P., & Siqueira, M. F. B. (2013). Bokashi: adubo orgânico fermentado. Niterói, RJ: Programa Rio Rural.

Skoufogianni, E., Solomou, A. D., & Danalatos, N. G. (2019). Ecology, cultivation and utilization of the aromatic Greek oregano (Origanum vulgare L.): A review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 545-552. DOI: https://doi.org/10.15835/nbha47311296

Taiz, L., Zeiger, E., Möller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6. ed.). Porto Alegre, RS: Artmed.

Vimal, S. R., Singh, J. S.; Arora, N. K., & Singh, S. (2017). Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere, 27(2), 177-192. DOI: https://doi.org/10.1016/S1002-0160(17)60309-6

Virga, G., Sabatino, L., Licata, M., Tuttolomondo, T., Leto, C., & La Bella, S. (2020). Effects of irrigation with different sources of water on growth, yield and essential oil compounds in oregano. Plants, 9(11), 1-19. DOI: https://doi.org/10.3390/plants9111618

Xavier, M. C. G., Santos, C. A., Costa, E. S. P., & Carmo, M. G. F. (2019). Produtividade de repolho em função de doses de bokashi. Revista de Agricultura Neotropical, 6(1), 17-22. DOI: https://doi.org/10.32404/rean.v6i1.2372

Published
2023-08-22
How to Cite
Wenneck, G. S., Saath, R., Moro, A. L., Carvalho, G. P. da S., Santi, D. C., & Rezende, R. (2023). Physiological responses of oregano under different water management and application of fermented bokashi compost. Acta Scientiarum. Agronomy, 45(1), e60807. https://doi.org/10.4025/actasciagron.v45i1.60807
Section
Crop Production

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus