Modification of canola cultivation conditions in a waterlogging-susceptible subtropical environment
Abstract
Waterlogging directly interferes with the production capacity of agricultural crops in response to morphophysiological changes caused to plants. Since cultivation in poorly drained soils is traditionally avoided, this study aimed to evaluate the possibility of ex
Waterlogging directly interferes with the production capacity of agricultural crops in response to the morphophysiological changes caused to plants. Since the cultivation of poorly drained soils is traditionally avoided, this study aimed to evaluate the possibility of expanding canola cultivation into waterlogged soils using soil surface drainage and different row spacings in lowland areas of Rio Grande do Sul, Brazil. Treatments consisted of the presence and absence of surface drains at 0.25 m depth and row spacings of 0.17, 0.34, 0.51, and 0.68 m arranged in two-factorial randomized blocks with four replications, in 2018 and 2019. In this study, growth traits, yield components, and the final grain yield of canola were evaluated. The increase in lateral branching in canola plants was found to be directly related to waterlogging and negatively affected yield. The use of drains positively impacted the number of pods per plant, seeds per pod, the 1,000 seeds weight, and grain yield. The more intense waterlogging conditions in 2018 resulted in the highest grain yield and superior production traits were obtained with row spacings between 0.41 and 0.48 m. In the absence of waterlogging, the 0.17 m row spacing was more productive. Canola cultivation can occur in waterlogged soils in the presence of surface drainage and at row spacings ranging from 0.40 to 0.50 m.
panding canola cultivation into waterlogged soils using soil surface drainage and different row spacings in lowland areas of Rio Grande do Sul, Brazil. Treatments consisted of the presence and absence of surface drains at 0.25 m depth and the row spacings of 0.17, 0.34, 0.51, and 0.68 m arranged in two-factorial randomized blocks with four replications, in 2018 and 2019. The growth traits, yield components, and the final grain yield of canola were evaluated. The increase in lateral branching in canola plants is directly related to waterlogging and negatively affects the yield. The use of drains positively impacted the number of siliques per plant, grains per silique, the thousand-grain mass, and grain yield. The more intense waterlogging conditions in 2018 resulted in the highest grain yield and superior production traits obtained with row spacings between 0.41 and 0.48 m. Canola cultivation can occur in poorly drained soils in the presence of surface drainage and at row spacings ranging from 0.40 to 0.50 m.
Downloads
References
Bagheri, H., Sharghi, Y., & Yazdani, M. (2011). The study of planting density on some agronomic traits of spring canola cultivars. Australian Journal of Basic and Applied Sciences, 5(1), 1302‑1305.
Bandeira, T. P., Chavarria, G., & Tomm, G. O. (2013) Desempenho agronômico de canola em diferentes espaçamentos entre linhas e densidades de plantas. Pesquisa Agropecuária Brasileira, 48(10), 1332-1341. DOI: https://doi.org/10.1590/S0100-204X2013001000004
Barrera-Rojas, C. H., Braga, G. H., Polverari, L., Pinheiro Brito, D. A.; Batista, D. S., Notini, M. M., ... Nogueira, F. T. S. (2020). MiR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses. Journal of Experimental Botany, 71(3), 934-950. DOI: https://doi.org/10.1093/jxb/erz475
Batista-Silva, W., Medeiros, D. B., Rodrigues-Salvador, A., Daloso, D. M., Omena-Garcia, R. P., Oliveira, F. S., ... Araujo, W. L. (2019). Modulation of auxin signalling through DIAGETROPICA and ENTIRE differentially affects tomato plant growth via changes in photosynthetic and mitochondrial metabolism. Plant, Cell & Environment, 42(2), 448-465. DOI: https://doi.org/10.1111/pce.13413
Bortoluzzi, M. P., Heldwein, A. B., Trentin, R., Maldaner, I. C., & Silva, J. R. da (2020). Risk of occurrence of water deficit in soybean cultivated in lowland soils. Earth Interactions, 24(1), 1-9. DOI: https://doi.org/10.1175/EI-D-19-0029.1
Bottega, E. L, Oliveira, Z. B., Kneis, A. E., Silva, C. M., Souza, I. J., Rodrigues, L. R., & Link, T. T. (2020). Desempenho produtivo de genótipos de canola na região central do rio grande do sul. American Crop Journal, 29(1), 1-10. DOI: https://doi.org/10.32929/2446-8355.2020v29n1p1-10
Buriol, G. A., Estefanel, V., Swarowsky, A., & D’avila, R. F. (2006). Homogeneidade e estatísticas descritivas dos totais mensais e anuais de chuva de Santa Maria, Estado do Rio Grande do Sul. Revista Brasileira de Recursos Hídricos, 11(1), 89‑97. DOI: https://doi.org/10.21168/rbrh.v11n4.p89-97
Chavarria, G., Tomm, G. O., Muller, A., Mendonça, H. F., Mello, N., & Betto, M. S. (2011). Índice de área foliar em canola cultivada sob variações de espaçamento e de densidade de semeadura. Ciência Rural, 41(12), 2084-2089. DOI: https://doi.org/10.1590/S0103-84782011001200008
Emygdio, B. M., Rosa, A. P. S. A., & Oliveira, A. C. B. (2017). Cultivo de soja e milho em terras baixas do Rio Grande do Sul. Brasília, DF: Embrapa.
Ferreira, D. F. (2014). Sisvar: um Guia para seus procedimentos bootstrap em múltiplas comparações. Ciência e Agrotecnologia, 38(2), 109-112. DOI: https://doi.org/10.1590/S1413-70542014000200001
Fontoura Júnior, J. A. S., Neto, M. F.; Brito, M. R., Ávila, M. R., Santos, D., Balverde, N. R. M., & Quadros, W. M. (2020). Simulação de diferentes arranjos de sistemas integrados em áreas de várzea. Brazilian Journal of Development, 6(8), 630-659. DOI: https://doi.org/10.34117/bjdv6n8-659
Goulart, R. Z., Reichert, J. M., & Rodrigues, M. F. (2020). Cropping poorly-drained lowland soils: Alternatives to rice monoculture, their challenges and management strategies. Agricultural Systems, 177(1), 102715-102722. DOI: https://doi.org/10.1016/j.agsy.2019.102715
Gularte, J. A., Macedo, V. G. K., & Panozzo, L. E. (2020). Produção e mercado de sementes de canola no Brasil. Applied Research & Agrotechnology, 13(1), 1-9. DOI: https://doi.org/10.5935/PAeT.V13.e5834
Guo, Y., Chen, J., Kuang, L., Wang, N., Zhang, G., Jiang, L., & Wu, D. (2020). Effects of waterlogging stress on early seedling development and transcriptomic responses in Brassica napus. Molecular Breeding, 40(85), 1-15. DOI: https://doi.org/10.1007/s11032-020-01167-z
Habibzadeh, F., Sorooshzadeh, A., Pirdashti, H., & Modarres-Sanavy, S. A. M. (2013). Alleviation of waterlogging damage by foliar application of nitrogen compounds and tricyclazole in canola. Australian Journal of Crop Science, 7(3), 401-406.
Heldwein, A. B., Buriol, A. G., & Streck, N. A. (2009). O clima de Santa Maria. Ciência e Ambiente, 38(1), 43-58.
Iriarte, L. B., & Valetti, O. E. (2008). Cultivo de colza. Buenos Aires, AR: Instituto Nacional de Tecnologia Agropecuária.
Kirkegaard, J. A., Lilley, J. M., Brill, R. D., Ware, A. H., & Walela, C. K. (2018). The critical period for yield and quality determination in canola (Brassica napus L.). Field Crops Research, 222(1), 180-188. DOI: https://doi.org/10.1016/j.fcr.2018.03.018
Krüger, C. A. M. B., Silva, J. A. G., Medeiros, S. L. P., Dalmago, G. A., Sartori, C. O., & Schiavo, J. (2011a). Arranjo de plantas na expressão dos componentes de produtividade de grãos de canola. Pesquisa Agropecuária Brasileira, 46(1), 1448-1453. DOI: https://doi.org/10.1590/S0100-204X2011001100005
Krüger, C. A. M. B., Silva, J. A. G., Medeiros, S. L. P., Dalmago, G. A., & Gaviraghi, J. (2011b). Herdabilidade e correlação fenotípica de caracteres relacionados à produtividade de grãos e à morfologia da canola. Pesquisa Agropecuária Brasileira, 46(12), 1625-1632. DOI: https://doi.org/10.1590/S0100-204X2011001200007
Krüger, C. A. M. B., Silva, J. A. G., Medeiros, S. L. P., Dalmago, G. A., Silva, A. J., Arenhardt, E. G., & Gewehr, E. (2014). Relações de variáveis ambientais e subperíodos na produtividade e teor de óleo em canola. Ciência Rural, 44(9), 1671-1677. DOI: https://doi.org/10.1590/0103-8478cr20121331
Kuai, J., Sun, Y., Zuo, Q., Huang, H., Liao, Q., Wu, C., … Zhou, G. (2015). The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Scientific Reports, 5(1), 18835-18845. DOI: https://doi.org/10.1038/srep18835
Li, H-J., Chai, L., Zhang, J-F., Pu, X-B., Jiang, J., Cui, C., … Jiang, L-C. (2016). Consistency of different indices in rapeseed (Brassica napus) may predict the waterlogging tolerance. International Journal of Agriculture and Biology, 18(1), 61-67. DOI: https://doi.org/10.17957/IJAB/15.0062
Liu, M., Tan, X., Sol, X., & Zwiazek, J. J. (2020). Properties of root water transport in canola (Brassica napus) subjected to waterlogging at the seedling, flowering and podding growth stages. Plant and Soil, 454(1), 431-445. DOI: https://doi.org/10.1007/s11104-020-04669-z
Loreti, E., Veen, H. V., & Perata, P. (2016). Plant responses to flooding stress. Current Opinion in Plant Biology, 33(1), 1-7. DOI: https://doi.org/10.1016/j.pbi.2016.06.005
Melo, T. S., Viega, A. B., Campos, A. D. S., Sinnemann, C. S., Silva, L. B. X., Vieira, P. A., ... Parfitt, J. M. B. (2021). Effect of the growing and soil management system on soybean establishment. Brazilian Journal of Development, 7(2), 18905-18912. DOI: https://doi.org/10.34117/bjdv7n2-504
Morrison, M. J., Mcvetty, P. E., & Shaykewich, C. F. (1989). The determination and verification of a baseline temperature for the growth of Westar summer rape. Canadian Journal of Plant Science, 69(1), 455-464. DOI: https://doi.org/10.4141/cjps89-057
Nabloussi, A., Bahri, H., Lakbir, M., Moukane, H., Kajji, A., & Fechtali, M. E. (2019). Assessment of a set of rapeseed (Brassica napus L.) varieties under waterlogging stress at different plant growth stages. Oilseeds and Fats, Crops and Lipids, 26(36), 1-10. DOI: https://doi.org/10.1051/ocl/2019033
Pashakolaee, S. D., Shahnazari, L., & Talukolaee, M. J. (2017). Investigation of canola yield as a second crop in paddy fields under subsurface drainage. Journal of Water and Soil Conservation, 24(1), 237-249. DOI: https://doi.org/10.22069/JWFST.2017.11160.2549
Peruzatto, J. M. Z., Lazzari, V. M., Agnes, G., Becker, R. O., Moura, A. C., Guedes, R. P., ... Giovenardi, M. (2017). The Impact of Oxytocin Gene Knockout on Sexual Behavior and Gene Expression Related to Neuroendocrine Systems in the Brain of Female Mice. Cellular and Molecular Neurobiology, 37(1), 803-815. DOI: https://doi.org/10.1007/s10571-016-0419-3
Ploschuk, R. A., Miralles, D. J., Colmer, T. D., Ploschuk, E. L., & Striker, G. G. (2020). Corrigendum: Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Frontiers in Plant Science, 10(1806), 1-2. DOI: https://doi.org/10.3389/fpls.2019.01806
Ploschuk, R. A., Miralles, D. J., Colmer, T. D., Ploschuk, E. L., & Striker, G. G. (2018). Waterlogging of winter crops at early stages: impacts on leaf physiology, growth and yield. Frontiers in Plant Science, 9(1863), 1-25. DOI: https://doi.org/10.3389/fpls.2018.01863
Ploschuk, R. A., Miralles, D. J., & Striker, G. G. (2021). Early- And late-waterlogging differentially affect the yield of wheat, barley, oilseed rape and field pea through changes in leaf area index, radiation interception and radiation use efficiency. Journal of Agronomy and Crop Science, 207(3), 504-520. DOI: https://doi.org/10.1111/jac.12486
Robertson, S. M., Jeffrey, S. R., Unterschultz, J. R., & Boxall, P. C. (2013). Estimating yield response to temperature and identifying critical temperatures for annual crops in the Canadian prairie region. Canadian Journal of Plant Science, 93(6), 1237-1247. DOI: https://doi.org/10.4141/cjps2013-125
Rossi, E., Lindino, C. A., Santos, R. F., Cremonez, P. A., Santos, K. G., Antonelli, J., & Nadaletti, W. C. (2015). Profundidade do lençol freático no cultivo de canola. HOLOS, 6(31), 1-6. DOI: https://doi.org/10.15628/holos.2015.1861
Santos, C. J. O. G., Rocha, L., Heldwein, A. B., Durigon, A., Nied, A. H., & Milanese, B. O. (2020). Efeito da desfolha na altura de plantas e produtividade de grãos de canola (Brassica napus L.). Ciência Agrícola, 18(1), 11-19. DOI: https://doi.org/10.28998/rca.v18i1.8006
Silveira, H. R. O., Santos, M. O., Alves, J. D., Souza, K. R. D., Andrade, C. A., & Alves, R. G. M. (2014). Efeitos do excesso de água no crescimento de mudas de café (Coffea arabica L.). Acta Scientiarum. Agronomy, 36(2), 211-218. DOI: https://doi.org/10.4025/actasciagron.v36i2.17557
Sociedade Brasileira de Ciência do Solo [SBCS]. (2016). Manual de adubação e calagem para os Estados do Rio Grande do Sul e de Santa Catarina (11. ed.). Porto Alegre, RS: SBCS/Núcleo Regional Sul.
Tartaglia, F. L., Righi, E. Z., Rocha, L., Maldaner, I. C., Salbego, E., & Heldwein, A. B. (2018). Water excess in different phenological stages of canola cultivars. African Journal of Agricultural Research, 13(45), 2563-2569. DOI: https://doi.org/10.5897/AJAR2018.13456
Tomm, G. O., Wiethölter, S., Dalmago, G. A., & Santos, H. P. (2009). Tecnologia para produção de canola no Rio Grande do Sul. Passo Fundo, RS: Embrapa Trigo.
Wollmer, A. C., Pitann, B., & Mühling, K. H. (2018). Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L.) but not seed quality. Journal of Agronomy and Crop Science, 204(1), 165–174. DOI: https://doi.org/10.1111/jac.12244
Xu, M., Ma, H., Zeng, L., Cheng, Y., Lu, G., Xu, J., … Zou, X. (2015). The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L. Field Crops Research, 180(1). 238-245. DOI: https://doi.org/10.1016/j.fcr.2015.06.007
Zaman, M. S. U., Malik, A. I., Erskine, W., & Kaur, P. (2019). Changes in gene expression during germination reveal pea genotypes with either “quiescence” or “escape” mechanisms of waterlogging tolerance. Plant, Cell & Environment, 42(1). 245-258. DOI: https://doi.org/10.1111/pce.13338
Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313-324. DOI: https://doi.org/10.1016/j.cell.2016.08.029
Zou, X., Hu, C., Zeng, L., Cheng, Y., Xu, M., & Zhang, X. (2014). A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny. PLoS ONE, 9(3), 1-9. DOI: https://doi.org/10.1371/journal.pone.0089731
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.