Long-term effects of cover crops on physical-hydric properties of compacted soil
Abstract
The screening of cover crops is essential for improving the physical-hydric properties of compacted soils. This study aimed to evaluate the effects of mixed or single cover crops on improving the physical-hydric properties of compacted Oxisol. Species with tap-rooted and fibrous-rooted rooting patterns were evaluated. The species included pearl millet (Pennisetum americanum), pigeon pea (Cajanus cajan), sunn hemp (Crotalaria spectabilis), velvet bean (Mucuna pruriens), white oat (Avena sativa), black oat (Avena strigosa), rye (Secale cereale), black oat + forage turnip (Raphanus sativus), black oat + white lupin (Lupinus albus L.), and black oat + group pea (Pisum arvense L.). Mixing cover crops did not improve the physical properties of the soil. The tap-rooted pigeon pea effectively reduces bulk density and increases porosity and saturated hydraulic conductivity (Ksat) in compact soils. The selection of cover crops with characteristics that improve soil physical-hydric properties is crucial for compacted areas.
Downloads
References
Ajayi, A. E., Horn, R., Rostek, J., Uteau, D., & Peth, S. (2019). Evaluation of temporal changes in hydrostructural properties of regenerating permanent grassland soils based on shrinkage properties and μCT analysis. Soil and Tillage Research, 185, 102–112. DOI: https://doi.org/10.1016/j.still.2018.09.005
Awe, G. O., Reichert, J. M., & Fontanela, E. (2020). Sugarcane production in the subtropics: Seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil and Tillage Research, 196, 1-7. DOI: https://doi.org/10.1016/j.still.2019.104447
Blanco‐Canqui, H., & Jasa, P. J. (2019). Do grass and legume cover crops improve soil properties in the long term?. Soil Science Society of America Journal, 83(4), 1181-1187. DOI: https://doi.org/10.2136/sssaj2019.02.0055
Blanco‐Canqui, H., & Ruis, S. J. (2020). Cover crop impacts on soil physical properties: A review. Soil Science Society of America Journal, 84(5), 1527-1576. DOI: https://doi.org/10.1002/saj2.20129
Bengough, A. G. (2012). Water dynamics of the root zone: rhizosphere biophysics and its control on soil hydrology. Vadose Zone Journal, 11(2). DOI: https://doi.org/10.2136/vzj2011.0111
Bodner, G., Leitner, D., & Kaul, H. P. (2014). Coarse and fine root plants affect pore size distributions differently. Plant and Soil, 380(1), 133-151. DOI: https://doi.org/10.1007/s11104-014-2079-8
Calonego, J. C., & Rosolem, C. A. (2010). Soybean root growth and yield in rotation with cover crops under chiseling and no-till. European Journal of Agronomy, 33(3), 242-249. DOI: http://doi.org/10.1016/j.eja.2010.06.002
Calonego, J. C., Gomes, T. C., Santos, C. H., & Tiritan, C. S. (2011). Cover crops growth in compacted soil. Bioscience Journal, 27(2), 289-296.
Calonego, J. C., Raphael, J. P., Rigon, J. P., Oliveira Neto, L., & Rosolem, C. A. (2017). Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. European Journal of Agronomy, 85, 31-37. DOI: https://doi.org/10.1016/j.eja.2017.02.001
Carminati, A., Zarebanadkouki, M., Kroener, E., Ahmed, M. A., & Holz, M. (2016). Biophysical rhizosphere processes affecting root water uptake. Annals of Botany, 118(4), 561-571. DOI: https://doi.org/10.1093/aob/mcw113
Çerçioğlu, M., Anderson, S. H., Udawatta, R. P., & Alagele, S. (2019). Effect of cover crop management on soil hydraulic properties. Geoderma, 343, 247-253. DOI: https://doi.org/10.1016/j.geoderma.2019.02.027
Chen, G., & Weil, R. R. (2010). Penetration of cover crop roots through compacted soils. Plant and Soil, 331(1), 31-43. DOI: https://doi.org/10.1007/s11104-009-0223-7
Chen, G., & Weil, R. R. (2011). Root growth and yield of maize as affected by soil compaction and cover crops. Soil and Tillage Research, 117, 17-27. DOI: https://doi.org/10.1016/j.still.2011.08.001
Chen, G., Weil, R. R., & Hill, R. L. (2014). Effects of compaction and cover crops on soil least limiting water range and air permeability. Soil and Tillage Research, 136, 61-69. DOI: https://doi.org/10.1016/j.still.2013.09.004
Colombi, T., Braun, S., Keller, T., & Walter, A. (2017). Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Science of the Total Environment, 574, 1283-1293. DOI: https://doi.org/10.1016/j.scitotenv.2016.07.194
Dechen, S. C. F., Telles, T. S., Guimarães, M. D. F., & Maria, I. C. D. (2015). Losses and costs associated with water erosion according to soil cover rate. Bragantia, 74(2), 224-233. DOI: https://doi.org/10.1590/1678-4499.0363
Drescher, M. S., Reinert, D. J., Denardin, J. E., Gubiani, P. I., Faganello, A., Silva, B. R. D., & Zardin, M. C. (2017). Fertilizer shanks to promote soil decompaction in the seeding operation. Ciência Rural, 47(3), 1-8. DOI: https://doi.org/10.1590/0103-8478cr20160026
Farias, L. D. N., Bonfim-Silva, E. M., Pietro-Souza, W., Vilarinho, M. K., Silva, T. J., & Guimarães, S. L. (2013). Características morfológicas e produtivas de feijão guandu anão cultivado em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(5), 497-503. DOI: https://doi.org/10.1590/S1415-43662013000500005
Feng, Y., Wang, J., Liu, T., Bai, Z., & Reading, L. (2019). Using computed tomography images to characterize the effects of soil compaction resulting from large machinery on three-dimensional pore characteristics in an opencast coal mine dump. Journal of Soils and Sediments, 19(3), 1467-1478. DOI: https://doi.org/10.1007/s11368-018-2130-0
Ferreira, C. J. B., Tormena, C. A., Severiano, E. D. C., Zotarelli, L., & Betioli Júnior, E. (2021). Soil compaction influences soil physical quality and soybean yield under long-term no-tillage. Archives of Agronomy and Soil Science, 67(3), 383-396. DOI: https://doi.org/10.1080/03650340.2020.1733535
Fuentes-Llanillo, R., Telles, T. S., Junior, D. S., Melo, T. R., Friedrich, T., & Kassam, A. (2021). Expansion of no-tillage practice in conservation agriculture in Brazil. Soil and Tillage Research, 208, 1-28. DOI: https://doi.org/10.1016/j.still.2020.104877
Garbelini, L. G., Franchini, J. C., Debiasi, H., Balbinot Junior, A. A., Betioli Junior, E., & Telles, T. S. (2020). Profitability of soybean production models with diversified crops in the autumn winter. Agronomy Journal, 112(5), 4092-4103. DOI: https://doi.org/10.1002/agj2.20308
Grzesiak, S., Grzesiak, M. T., Hura, T., Marcińska, I., & Rzepka, A. (2013). Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environmental and Experimental Botany, 88, 2-10. DOI: https://doi.org/10.1016/j.envexpbot.2012.01.010
Gubiani, P. I., Reinert, D. J., Reichert, J. M., Gelain, N. S., & Minella, J. P. G. (2010). Permeâmetro de carga decrescente associado a programa computacional para a determinação da condutividade hidráulica do solo saturado. Revista Brasileira de Ciência do Solo, 34(3), 993-997. DOI: https://doi.org/10.1590/S0100-06832010000300041
Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121-145. DOI: http://dx.doi.org/10.1016/j.still.2004.08.009
Haruna, S. I., Anderson, S. H., Nkongolo, N. V., & Zaibon, S. (2018). Soil hydraulic properties: Influence of tillage and cover crops. Pedosphere, 28(3), 430-442. DOI: https://doi.org/10.1016/S1002-0160(17)60387-4
Haruna, S. I., Anderson, S. H., Udawatta, R. P., Gantzer, C. J., Phillips, N. C., Cui, S., & Gao, Y. (2020). Improving soil physical properties through the use of cover crops: A review. Agrosystems, Geosciences & Environment, 3(1), 1-18. DOI: https://doi.org/10.1002/agg2.20105
Hudek, C., Putinica, C., Otten, W., & De Baets, S. (2022). Functional root trait‐based classification of cover crops to improve soil physical properties. European Journal of Soil Science, 73(1), 1-16. DOI: https://doi.org/10.1111/ejss.13147
Jabro, J. D., Allen, B. L., Rand, T., Dangi, S. R., & Campbell, J. W. (2021). Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system. Land, 10(202), 1-10. DOI: https://doi.org/10.3390/land10020202
Jafari, R., Sheikh, V., Hossein-Alizadeh, M., & Rezaii-Moghadam, H. (2017). Effect of soil sample size on saturated soil hydraulic conductivity. Communications in Soil Science and Plant Analysis, 48(8), 908-919. DOI: https://doi.org/10.1080/00103624.2017.1323086
Lima, R. P., Keller, T., Giarola, N. B., Tormena, C. A., da Silva, A. R., & Rolim, M. M. (2020). Measurements and simulations of compaction effects on the least limiting water range of a no-till Oxisol. Soil Research, 58, 62-72. DOI: https://doi.org/10.1071/SR19074
Lima, L. B., Petter, F. A. & Leandro, W. M. (2015). Desempenho de plantas de cobertura sob níveis de compactação em Latossolo Vermelho de Cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(11), 1064-1071. DOI: http://dx.doi.org/10.1590/18071929/agriambi.v19n11p1064-1071
Lima, R. P., Rolim, M. M., Toledo, M. P., Tormena, C. A., da Silva, A. R., Silva, I. A. C., & Pedrosa, E. M. (2022). Texture and degree of compactness effect on the pore size distribution in weathered tropical soils. Soil and Tillage Research, 215. DOI: https://doi.org/10.1016/j.still.2021.105215
Lynch, J. P., & Wojciechowski, T. (2015). Opportunities and challenges in the subsoil: pathways to deeper rooted crops. Journal of Experimental Botany, 66(8), 2199-2210. DOI: https://doi.org/10.1093/jxb/eru508
Panziera, W., Lima, C. L. R., Timm, L. C., Aquino, L. S., Barros, W. S., Stumpf, L., ... Pauletto, E. A. (2022). Investigating the relationships between soil and sugarcane attributes under different row spacing configurations and crop cycles using the state-space approach. Soil and Tillage Research, 217, 1-6. DOI: https://doi.org/10.1016/j.still.2021.105270
Peixoto, D. S., Silva, B. M., Oliveira, G. C., Moreira, S. G., Silva, F., & Curi, N. (2019). A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil and Tillage Research, 194, 1-7. DOI: https://doi.org/10.1016/j.still.2019.104307
Ramos, M. F., Silva Almeida, W. R., Amaral, R. D. L., & Suzuki, L. E. A. S. (2022). Degree of compactness and soil quality of peach orchards with different production ages. Soil and Tillage Research, 219, 1-7. DOI: https://doi.org/10.1016/j.still.2022.105324
Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., & Hakansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2), 242-254. DOI: https://doi.org/10.1016/j.still.2008.07.002
Reichert, J. M., Rodrigues, M. F., Bervald, C. M. P., & Kato, O. R. (2016). Fire‐free fallow management by mechanized chopping of biomass for sustainable agriculture in Eastern Amazon: Effects on soil compactness, porosity, and water retention and availability. Land Degradation & Development, 27(5), 1403-1412. DOI: https://doi.org/10.1002/ldr.2395
Reichert, J. M., Corcini, A. L., Awe, G. O., Reinert, D. J., Albuquerque, J. A., Gallarreta, C. C. G., & Docampo, R. (2022). Onion-forage cropping systems on a Vertic Argiudoll in Uruguay: Onion yield and soil organic matter, aggregation, porosity and permeability. Soil and Tillage Research, 216, 1-7. DOI: https://doi.org/10.1016/j.still.2021.105229
Reichert, J. M., Mentges, M. I., Rodrigues, M. F., Cavalli, J. P., Awe, G. O., & Mentges, L. R. (2018). Compressibility and elasticity of subtropical no-till soils varying in granulometry organic matter, bulk density and moisture. Catena, 165, 345-357. DOI: https://doi.org/10.1016/j.catena.2018.02.014
Reinert, D. J., Albuquerque, J. A., Reichert, J. M., Aita, C., & Andrada, M. M. C. (2008). Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciência do Solo, 32(5), 1805-1816. DOI: https://doi.org/10.1590/S0100-06832008000500002
Reinert, D. J., & Reichert, J. M. (2006). Coluna de areia para medir a retenção de água no solo: protótipos e teste. Ciência Rural, 36(6), 1931-1935. DOI: https://doi.org/10.1590/S0103-84782006000600044
Ren, L., Nest, T. V., Ruysschaert, G., D’Hose, T., & Cornelis, W. M. (2019). Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil and Tillage Research, 192, 76-86. DOI: https://doi.org/10.1016/j.still.2019.04.026
Rosolem, C. A., Foloni, J. S. S., & Tiritan, C. S. (2002). Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil and Tillage Research, 65(1), 109-115. DOI: http://dx.doi.org/10.1016/S0167-1987(01)00286-0
Ruis, S. J., Blanco‐Canqui, H., Elmore, R. W., Proctor, C., Koehler‐Cole, K., Ferguson, R. B., ... Shapiro, C. A. (2020). Impacts of cover crop planting dates on soils after four years. Agronomy Journal, 112(3), 1649-1665. DOI: https://doi.org/10.1002/agj2.20143
Scarpare, F. V., van Lier, Q. D. J., Camargo, L., Pires, R. C. M., Ruiz-Correa, S. T., Bezerra, A. H. F., ... Dias, C. T. D. S. (2019). Tillage effects on soil physical condition and root growth associated with sugarcane water availability. Soil and Tillage Research, 187, 110-118. DOI: https://doi.org/10.1016/j.still.2018.12.005
Secco, D., Bassegio, D., Villa, B., Marins, A. C., Junior, L. A. Z., Silva, T. R. B., & Souza, S. N. M. (2021). Crambe oil yield and soil physical properties responses to no-tillage, cover crops and chiseling. Industrial Crops and Products, 161, 1-6. DOI: https://doi.org/10.1016/j.indcrop.2020.113174
Silva, R. F., Costa Severiano, E., Oliveira, G. C., Barbosa, S. M., Peixoto, D. S., Tassinari, D., ... Figueiredo, T. D. A. F. R. (2021). Changes in soil profile hydraulic properties and porosity as affected by deep tillage soil preparation and Brachiaria grass intercropping in a recent coffee plantation on a naturally dense Inceptisol. Soil and Tillage Research, 213, 1-8. DOI: https://doi.org/10.1016/j.still.2021.105127
Soares, M. D. R., Souza, Z. M., Campos, M. C. C., Silva, R. B., Esteban, D. A. A., Noronha, R. L., ... Cunha, J. M. (2021). Land-use change and its impact on physical and mechanical properties of Archaeological Black Earth in the Amazon rainforest. Catena, 202, 1-7. DOI: https://doi.org/10.1016/j.catena.2021.105266
Soil Survey Staff. (2010). Keys to soil taxonomy (11th ed.). Washingthon, DC: USDA-Natural Resources Conservation Service.
Soracco, C. G., Villarreal, R., Melani, E. M., Oderiz, J. A., Salazar, M. P., Otero, M. F., ... Lozano, L. A. (2019). Hydraulic conductivity and pore connectivity. Effects of conventional and no-till systems determined using a simple laboratory device. Geoderma, 337, 1236-1244. DOI: https://doi.org/10.1016/j.geoderma.2018.10.045
Smith, R. G., Atwood, L. W., & Warren, N. D. (2014). Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS ONE, 9(5), 1-8. DOI: https://doi.org/10.1371/journal.pone.0097351
Stavi, I., Lal, R., Jones, S., & Reeder, R. C. (2012). Implications of cover crops for soil quality and geodiversity in a humid-temperate region in the Midwestern USA. Land Degradation & Development, 23(4), 322-330. DOI: https://doi.org/10.1002/ldr.2148
Tormena, C. A., Karlen, D. L., Logsdon, S., & Cherubin, M. R. (2017). Corn stover harvest and tillage impacts on near-surface soil physical quality. Soil and Tillage Research, 166, 122-130. DOI: https://doi.org/10.1016/j.still.2016.09.015
Yu, Y., Loiskand, W., Kaul, H. P., M, Himmelbauer, Wei, W., Chen, L., & Bodner, G. (2016). Estimation of runoff mitigation by morphologically different cover crop root systems. Journal of Hydrology, 538, 667-676. DOI: https://doi.org/10.1016/j.jhydrol.2016.04.060
Vujić, S., Krstić, D., Mačkić, K., Čabilovski, R., Radanović, Z., Zhan, A., & Ćupina, B. (2021). Effect of winter cover crops on water soil storage, total forage production, and quality of silage maize. European Journal of Agronomy, 130, 1-7. DOI: https://doi.org/10.1016/j.eja.2021.126366
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.