Application rate and hydraulic tips used in remotely piloted aircraft affect the phytosanitary products in coffee plant canopies
Abstract
Most coffee (Coffea arabica) phytosanitary management techniques are performed using ground-based equipment, and remotely piloted aircraft are a recent alternative. Therefore, this study evaluates the effect of different application rates and hydraulic tips used for spreading phytosanitary products on coffee crops using a remotely piloted aircraft, assisted by artificial targets and dye tracing. The experiment was a 4 × 3 factorial randomized block design with four tips (XR 110-01, TT 110-01, AIXR 110-015, and TTJ60 110-02) and three application rates (8, 12, and 16 L ha-1). Hydrosensitive paper was used to analyze the droplet spectrum, and the Brilliant Blue tracer was used to detect spray deposition. The DJI Agras T20 remotely piloted aircraft was used to apply the phytosanitary product. Speed, flight height, and application range were maintained at 5.56 m s-1, 2 m, and 5 m, respectively. The flight direction was perpendicular to the crop planting lines. The application rate and hydraulic tip jointly controlled the accumulation of droplets on the target according to its position in the plant canopy. Therefore, remotely piloted aircraft can be used in coffee phytosanitary management, particularly to control targets that predominately occur in the upper third of the plant canopy.
Downloads
References
Alves, T. C., Cunha, J. P. A. R., Alves, G. S., Silva, S. M., & Lemes, E. M. (2020). Canopy volume and application rate interaction on spray deposition for different phenological stages of coffee crop. Coffee Science, 15, 1-14. DOI: https://doi.org/10.25186/cs.v15i.1777
American Society of Agricultural Engineers [ASAE]. (2000). Spray nozzle classification by droplet spectra. St. Joseph, US: ASAE Standards.
Escolà, A., Camp, F., Solanelles, F., Planas, S., Gracia, F., Rosell, J. R., … Val, L. (2006). Spray application volume test in apple and pear orchards in Catalonia (Spain) and Variable Rate Technology for dose adjustment. In 2006 ASAE Annual Meeting (p. 1-9). St. Joseph, MI: American Society of Agricultural and Biological Engineers. DOI: https://doi.org/10.13031/2013.20624
Carvalho, F. K., Chechetto, R. G., Mota, A. A., & Antuniassi, U. R. (2020). Challenges of aircraft and drone spray applications. Outlooks on Pest Management, 31(2), 83-88. DOI: https://doi.org/10.1564/v31_apr_07
Chen, P., Lan, Y., Huang, X., Qi, H., Wang, G., Wang, J., … Xiao, H. (2020). Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle. Agronomy, 10(2), 1-14. DOI: https://doi.org/10.3390/agronomy10020303
Chen, H., Lan, Y., Fritz, B. K., Hoffmann, W. C., & Liu, S. (2021a). Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV). International Journal of Agricultural and Biological Engineering, 14(1), 38-49. DOI: https://doi.org/10.25165/j.ijabe.20211401.5714.
Chen, P., Ouyang, F., Wang, G., Qi, H., Xu, W., Yang, W., … Lan, Y. (2021b). Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters. Industrial Crops and Products, 163, 113324. DOI: https://doi.org/10.1016/j.indcrop.2021.113324
Chen, C., Li, S., Wu, X., Wang, Y., & Kang, F. (2022). Analysis of droplet size uniformity and selection of spray parameters based on the biological optimum particle size theory. Environmental Research, 204(Part B), 112076. DOI: https://doi.org/10.1016/j.envres.2021.112076
Chojnacki, J., & Pachuta, A. (2021). Impact of the parameters of spraying with a small unmanned aerial vehicle on the distribution of liquid on young cherry trees. Agriculture, 11(11), 1-13. DOI: https://doi.org/10.3390/agriculture11111094
Crause, D. H., Vitória, E. L., Soela, D. M., Oliveira, D. A., Batista, A. G., & Graça Lacerda, E. (2020). Estimativa de deriva na aplicação de defensivos agrícolas no café conilon: derivative estimate in the application of agricultural defensives in conilon coffee. Brazilian Journal of Production Engineering, 6(4), 85-94.
Gitirana Neto, J., Cunha, J. P. A. R., Almeida, V. V., & Alves, G. S. (2015). Spray deposition on coffee leaves from airblast sprayers with and without electrostatic charge. Bioscience Journal, 31(5), 1296-1303. DOI: https://doi.org/10.14393 / BJ-v31n5a2015-26876
Guo, S., Li, J., Yao, W., Hu, X., Wei, X., Long, B., ... & Li, H. (2021). Optimization of the factors affecting droplet deposition in rice fields by rotary unmanned aerial vehicles (UAVs). Precision Agriculture, 22(6), 1918-1935. DOI: https://doi.org/10.1007/s11119-021-09818-7
He, X. (2018). Rapid development of unmanned aerial vehicles (UAV) for plant protection and application technology in China. Outlooks on Pest Management, 29(4), 162-167. DOI: https://doi.org/10.1564/v29_aug_04
Li, X., Andaloro, J. T., Lang, E. B., & Pan, Y. (2019). Best management practices for unmanned aerial vehicles (UAVs) application of insecticide products on rice. In 2019 ASABE Annual International Meeting (p. 1). St. Joseph, MI: American Society of Agricultural and Biological Engineers. DOI: https://doi:10.13031/aim.201901493
Lost Filho, F. H., Heldens, W. B., Kong, Z., & Lange, E. S. (2020). Drones: innovative technology for use in precision pest management. Journal of Economic Entomology, 113(1), 1-25. DOI: https://doi.org/10.1093/jee/toz268
Michael, C., Gil, E., Gallart, M., & Stavrinides, M. C. (2021). Evaluation of the effects of spray technology and volume rate on the control of grape berry moth in mountain viticulture. Agriculture, 11(2), 1-15. DOI: https://doi.org/10.3390/agriculture11020178
Miranda, M. P., Scapin, M. S., Vizoni, M. C., Zanardi, O. Z., Eduardo, W. I., & Volpe, H. X. L. (2021). Spray volumes and frequencies of insecticide applications for suppressing Diaphorina citri populations in orchards. Crop Protection, 140, 105406. DOI: https://doi.org/10.1016/j.cropro.2020.105406
Mogili, U. R., & Deepak, B. B. V. L. (2021). Influence of drone rotors over droplet distribution in precision agriculture. In Advanced Manufacturing Systems and Innovative Product Design (p. 401-410). Singapore, SG: Springer. DOI: https://doi.org/10.1007/978-981-15-9853-1_34
Pascuzzi, S., Bulgakov, V., Santoro, F., Anifantis, A. S., Ivanovs, S., & Holovach, I. (2020). A study on the drift of spray droplets dipped in airflows with different directions. Sustainability, 12(11), 1-15. DOI: https://doi.org/10.3390/su12114644
R Core Team (2021). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on Dec. 10, 2021 from https://www.R-project.org
Salcedo, R., Fonte, A., Grella, M., Garcerá, C., & Chueca, P. (2021). Blade pitch and air-outlet width effects on the airflow generated by an airblast sprayer with wireless remote-controlled axial fan. Computers and Electronics in Agriculture, 190, 1-7. DOI: https://doi.org/10.1016/j.compag.2021.106428
Santos, A. O., Santos, N. A. P., Moreira, C. A., Lima, M. A., & Lino, A. C. L. (2021). Development and test of a confining and recycling sprayer for viticulture. Revista Brasileira de Fruticultura, 43(6), 1-13. DOI: https://doi.org/10.1590/0100-29452021031
Shan, C., Wang, G., Wang, H., Xie, Y., Wang, H., Wang, S., ... Lan, Y. (2021). Effects of droplet size and spray volume parameters on droplet deposition of wheat herbicide application by using UAV. International Journal of Agricultural and Biological Engineering, 14(1), 74-81. DOI: https://doi.org/10.25165/j.ijabe.20211401.6129
Soela, D. M., Vitória, E. L., Oliveira, R. F., Crause, D. H., Freitas, I. L. D. J., & Locatelli, T. (2020). Control spraying process statistics using uniproved air vehicle in conilon coffee culture. Brazilian Journal of Production Engineering, 6(4), 52-63.
Tang, Y., Hou, C. J., Luo, S. M., Lin, J. T., Yang, Z., & Huang, W. F. (2018). Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle. Computers and Electronics in Agriculture, 148, 1-7. DOI: https://doi.org/10.1016/j.compag.2018.02.026
Verbiest, R., Ruysen, K., Vanwalleghem, T., Demeester, E., & Kellens, K. (2021). Automation and robotics in the cultivation of pome fruit: Where do we stand today?. Journal of Field Robotics, 38(4), 513-531. DOI: https://doi.org/10.1002/rob.22000
Vitória, E. L., Rodrigues, J. P., Penha Simon, C., & Pereira, R. C. (2018). Pulverização hidropneumática usando equipamentos com e sem assistência eletrostática em cafeeiro Conilon. Revista Engenharia na Agricultura, 26(3), 217-228. DOI: https://doi.org/10.13083/reveng.v26i3.845
Wang, J., Lan, Y., Zhang, H., Zhang, Y., Wen, S., Yao, W., & Deng, J. (2018). Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. International Journal of Agricultural and Biological Engineering, 11(6), 5-12. DOI: https://doi.org/10.25165/j.ijabe.20181106.4038
Zhan, Y., Chen, P., Xu, W., Chen, S., Han, Y., Lan, Y., & Wang, G. (2022). Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution. Biosystems Engineering, 216, 32-45. DOI: https://doi.org/10.1016/j.biosystemseng.2022.01.016
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.