Changing the land use from degraded pasture into integrated farming systems enhance soil carbon stocks in the Cerrado biome
Abstract
Integrated agricultural production systems can increase soil organic carbon stocks over time and contribute to the mitigation of climate change. The present study aimed to evaluate soil carbon stocks, accumulation rates (TOC), total nitrogen (TN), and the quality of soil organic matter (SOM) after the transition of a low-productivity pasture into agrosilvopastoral systems in the Cerrado biome. We evaluated an 11-year-old experiment, and the treatments studied were: Eucalyptus + buffel grass; Eucalyptus + cowpea; Eucalyptus + pigeon pea; eucalyptus + buffel grass + cowpea; Eucalyptus + buffel grass + pigeon pea; Eucalyptus in monoculture (with a 20 × 3 m tree arrangement and no cultivation between rows but with a history of forage and grain crop production); and a low-productivity pasture as additional treatment and reference to the soil condition previously the land-use change. In this study, TOC and TN stocks and accumulation, labile (LC) and non-labile carbon (NLC), and SOM humic fractions were evaluated at 0-10, 10-20, 20-40, and 0-40 cm depth layers. Integrated farming systems have increased TOC and TN, NLC, carbon contents and stocks in SOM chemical fractions in all depths and TOC and TN accumulation of 5.22 Mg ha-1 year-1 and 0.23 Mg ha-1 year-1, respectively, at the 0-40 cm depth layer. The integration of Eucalyptus with legumes or buffel grass increased the LC content in the surface layer of the soil. The transition from low-productivity pasture into integrated farming systems can promote the recovery of SOM and soil quality. Hence, our results suggest that agrosilvopastoral systems can be used as sustainable farming systems in the Cerrado biome.
Downloads
References
Abreu, L. H. G., Freitas, I. C., Santana, P. H. L., Barbosa, D. L. A., Santos, L. D. T., Santos, M. V., ... Frazão, L. A. (2020). Variation in soil carbon, nitrogen and microbial attributes within a silvopastoral system in the Brazilian Cerrado. Agroforestry Systems, 94(6), 2343-2353. DOI: http://doi.org/10.1007/s10457-020-00554-x
Almeida, L. L.S., Frazão, L. A., Lessa, T. A. M., Fernandes, L. A., Veloso, Á. L. C., Lana, A. M. Q., ... Ferreira, E. A. (2021). Soil carbon and nitrogen stocks and the quality of soil organic matter under silvopastoral systems in the Brazilian Cerrado. Soil and Tillage Research, 205, 104785. DOI: http://doi.org/10.1016/j.still.2020.104785
Araujo, N. C. A., Frazão, L. A., Freitas, I. C., Ferreira, E. A., Freitas, D. A., Santos, M. V., ... Fernandes, L. A. (2020). Soil chemical and microbiological attributes under integrated production system in Oxisol of degraded pasture. Australian Journal of Crop Science, 14(11), 1772-1778. DOI: http://doi.org/10.21475/ajcs.20.14.11.p2535
Bai, X., Guo, Z., Huang, Y., & An, S. (2020). Root cellulose drives soil fulvic acid carbon sequestration in the grassland restoration process. Catena, 191, 104575. DOI: http://doi.org/10.1016/j.catena.2020.104575
Bieluczyk, W., Piccolo, M. C., Pereira, M. G., Moraes, M. T., Soltangheisi, A., Bernardi, A. C. C., ... Cherubin, M. R. (2020). Integrated farming systems influence soil organic matter dynamics in southeastern Brazil. Geoderma, 371, 114368. DOI: http://doi.org/10.1016/j.geoderma.2020.114368
Blair, G. J., Lefroy, R. D., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7), 1459-1466. DOI: http://doi.org/10.1071/AR9951459
Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis (p. 363-375). Madison, WI: Science Society of America.
Bordonal, R. O., Lal, R., Ronquim, C. C., Figueiredo, E. B., Carvalho, J. L. N., Maldonado Jr, W., ... La Scala Jr., N. (2017). Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agriculture, Ecosystems & Environment, 240, 54-65. DOI: http://doi.org/10.1016/j.agee.2017.02.016
Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen total. In A. L. Page (Ed.), Methods of soil analysis (p. 595-624). Madison, WI: Soil Science Society of America.
Chen, C., Liu, W., Jiang, X., & Wu, J. (2017). Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use. Geoderma, 299, 13-24. DOI: http://doi.org/10.1016/j.geoderma.2017.03.021
Coser, T. R., Figueiredo, C. C., Jovanovic, B., Moreira, T. N., Leite, G. G., Cabral Filho, S. L. S., ... Marchão, R. L. (2018). Short-term buildup of carbon from a low-productivity pastureland to an agrisilviculture system in the Brazilian savannah. Agricultural Systems, 166, 184-195. DOI: http://doi.org/10.1016/j.agsy.2018.01.030
Cunha, J. R. D., Freitas, R. D. C. A. D., Souza, D. J. D. A. T., Gualberto, A. V. S., Souza, H. A. D., & Leite, L. F. C. (2021). Soil biological attributes in monoculture and integrated systems in the Cerrado region of Piauí State, Brazil. Acta Scientiarum. Agronomy, 43(1), 51814. DOI: http://doi.org/10.4025/actasciagron.v43i1.51814
Damian, J. M., Matos, E. S., Pedreira, B. C., Carvalho, P. C. F., Souza, A. J., Andreote, F. D., ... Cerri, C. E. P. (2021). Pastureland intensification and diversification in Brazil mediate soil bacterial community structure changes and soil C accumulation. Applied Soil Ecology, 160, 103858. DOI: http://doi.org/10.1016/j.apsoil.2020.103858
Frazão, L. A., Cardoso, P. H. S., Almeida Neta, M. N., Mota, M. F. C., Almeida, L. L. S., Ribeiro, J. M., ... Feigl, B. J. (2021). Carbon and nitrogen stocks and organic matter fractions in the topsoil of traditional and agrisilvicultural systems in the Southeast of Brazil. Soil Research, 59(8), 794-805. DOI: http://doi.org/10.1071/SR20150
Freitas, I. C., Ribeiro, J. M., Araújo, N. C. A., Santos, M. V., Sampaio, R. A., Fernandes, L. A., ... Frazão, L. A. (2020). Agrosilvopastoral systems and well-managed pastures increase soil carbon stocks in the Brazilian Cerrado. Rangeland Ecology & Management, 73(6), 776-785. DOI: http://doi.org/10.1016/j.rama.2020.08.001
Gmach, M. R., Dias, B. O., Silva, C. A., Nóbrega, J. C., Lustosa-Filho, J. F., & Siqueira-Neto, M. (2018). Soil organic matter dynamics and land-use change on Oxisols in the Cerrado, Brazil. Geoderma Regional, 14, e00178. DOI: http://doi.org/10.1016/j.geodrs.2018.e00178
Gomes, M. F., Vasconcelos, S. S., Viana‐Junior, A. B., Costa, A. N. M., Barros, P. C., Kato, O. R., & Castellani, D. C. (2021). Oil palm agroforestry shows higher soil permanganate oxidizable carbon than monoculture plantations in Eastern Amazonia. Land Degradation & Development, 32(15), 4313-4326. DOI: http://doi.org/10.1002/ldr.4038
Huang, J., Rinnan, Å., Bruun, T. B., Engedal, T., & Bruun, S. (2021). Identifying the fingerprint of permanganate oxidizable carbon as a measure of labile soil organic carbon using Fourier transform mid‐infrared photoacoustic spectroscopy. European Journal of Soil Science, 72(4), 1-11. DOI: http://doi.org/10.1111/ejss.13085
Instituto Nacional de Meteorologia (2022). BDMEP – Banco de Dados Meteorológicos para Ensino e Pesquisa. Retrieved on Jan. 30, 2022 from http://www.inmet.gov.br/portal/
Jalota, R. K., Dalal, R. C., Harms, B. P., Page, K., Mathers, N. J., & Wang, W. J. (2006). Effects of litter and fine root composition on their decomposition in a Rhodic Paleustalf under different land uses. Communications in Soil Science and Plant Analysis, 37(13-14), 1859-1875. DOI: http://doi.org/10.1080/00103620600767108
Li, S., Li, X., Zhu, W., Chen, J., Tian, X., & Shi, J. (2019). Does straw return strategy influence soil carbon sequestration and labile fractions? Agronomy Journal, 111(2), 897-906. DOI: http://doi.org/10.2134/agronj2018.08.0484
Ma, Z., Chen, H. Y., Bork, E. W., Carlyle, C. N., & Chang, S. X. (2020). Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta‐analysis. Global Ecology and Biogeography, 29(10), 1817-1828. DOI: http://doi.org/10.1111/geb.13145
Ma, L., Lv, X., Cao, N., Wang, Z., Zhou, Z., & Meng, Y. (2021). Alterations of soil labile organic carbon fractions and biological properties under different residue-management methods with equivalent carbon input. Applied Soil Ecology, 161. DOI: http://doi.org/10.1016/j.apsoil.2020.103821
Mendonça, E. S., & Matos, E. S. (2005). Matéria orgânica do solo: métodos de análises. Viçosa, MG: UFV.
Muchane, M. N., Sileshi, G. W., Gripenberg, S., Jonsson, M., Pumariño, L., & Barrios, E. (2020). Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agriculture, Ecosystems & Environment, 295, 106899. DOI: http://doi.org/10.1016/j.agee.2020.106899
Nath, A. J., Brahma, B., Sileshi, G. W., & Das, A. K. (2018). Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Science of the Total Environment, 624, 908-917. DOI: http://doi.org/10.1016/j.scitotenv.2017.12.199
Ndzelu, B. S., Dou, S., & Zhang, X. (2020). Corn straw return can increase labile soil organic carbon fractions and improve water-stable aggregates in Haplic Cambisol. Journal of Arid Land, 12(6), 1018-1030. DOI: http://doi.org/10.1007/s40333-020-0024-7
Pfleger, P., Cassol, P. C., & Mafra, Á. L. (2017). Substâncias húmicas em cambissolo sob vegetação natural e plantios de pinus em diferentes idades. Ciência Florestal, 27(3), 807-817. DOI: http://doi.org/10.5902/1980509828631
Ramos, M. L. G., Silva, V. G. D., Carvalho, A. M. D., Malaquias, J. V., Oliveira, A. D. D., Sousa, T. R. D., & Silva, S. B. (2020). Carbon fractions in soil under no-tillage corn and cover crops in the Brazilian Cerrado. Pesquisa Agropecuária Brasileira, 55, 1-9. DOI: http://doi.org/10.1590/S1678-3921.pab2020.v55.01743
Rodrigues, M. N., Santos, L. D. T., Sampaio, R. A., & Fernandes, L. A. (2017). Soil chemical properties in an integrated crop-livestock-forestry system. Revista Engenharia na Agricultura, 25(1), 63-73. DOI: http://doi.org/10.13083/reveng.v25i1.695
Santos, U. J., Duda, G. P., Marques, M. C., Medeiros, E. V., Lima, J. R. S., Souza, E. S., ... & Hammecker, C. (2019). Soil organic carbon fractions and humic substances are affected by land uses of Caatinga forest in Brazil. Arid Land Research and Management, 33(3), 255-273. DOI: http://doi.org/10.1080/15324982.2018.1555871
Segnini, A., Carvalho, J. L. N., Bolonhezi, D., Milori, D. M. B. P., Silva, W. T. L. D., Simões, M. L., ... Martin-Neto, L. (2013). Carbon stock and humification index of organic matter affected by sugarcane straw and soil management. Scientia Agricola, 70(5), 321-326. DOI: http://doi.org/10.1590/S0103-90162013000500006
Shang, C., & Tiessen, H. (1997). Organic matter lability in a tropical oxisol: evidence from shifting cultivation, chemical oxidation, particle size, density, and magnetic fractionations. Soil Science, 162(11), 795-807. DOI: http://doi.org/10.1097/00010694-199711000-00004
Siqueira, C. C. Z., Chiba, M. K., Moreira, R. S., & Abdo, M. T. V. N. (2020). Carbon stocks of a degraded soil recovered with agroforestry systems. Agroforestry Systems, 94(3), 1059-1069. DOI: http://doi.org/10.1007/s10457-019-00470-9
Tadini, A. M., Martin‐Neto, L., Goranov, A. I., Milori, D. M., Bernardi, A. C., Oliveira, P. P., ... Hatcher, P. G. (2021a). Chemical characteristics of soil organic matter from integrated agricultural systems in southeastern Brazil. European Journal of Soil Science, 73(1), 13136. DOI: http://doi.org/10.1111/ejss.13136
Tadini, A. M., Xavier, A. A., Milori, D. M., Oliveira, P. P., Pezzopane, J. R., Bernardi, A. C., & Martin-Neto, L. (2021b). Evaluation of soil organic matter from integrated production systems using laser-induced fluorescence spectroscopy. Soil and Tillage Research, 211, 105001. DOI: http://doi.org/10.1016/j.still.2021.105001
Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais. Porto Alegre, RS: UFRGS.
Toru, T., & Kibret, K. (2019). Carbon stock under major land use/land cover types of Hades sub-watershed, eastern Ethiopia. Carbon Balance and Management, 14(7), 1-14. DOI: http://doi.org/10.1186/s13021-019-0122-z
Wang, S., Adhikari, K., Wang, Q., Jin, X., & Li, H. (2018). Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C: N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators, 84, 263-272. DOI: http://doi.org/10.1016/j.ecolind.2017.08.046
Wu, J., Zeng, H., Zhao, F., Chen, C., Liu, W., Yang, B., & Zhang, W. (2020). Recognizing the role of plant species composition in the modification of soil nutrients and water in rubber agroforestry systems. Science of The Total Environment, 723, 138042. DOI: http://doi.org/10.1016/j.scitotenv.2020.138042
Yadav, G. S., Kandpal, B. K., Das, A., Babu, S., Mohapatra, K. P., Devi, A. G., Chandra, P., ... Barman, K. K. (2021). Impact of 28 year old agroforestry systems on soil carbon dynamics in Eastern Himalayas. Journal of Environmental Management, 283, 111978. DOI: http://doi.org/10.1016/j.jenvman.2021.111978
Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19(13), 1467-1476. DOI: https://doi.org/10.1080/00103628809368027
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers FinanceCode001 -
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Grant numbers PPM-00617-18 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 316873/2021-7