Predictions in biometric models
Abstract
One of the domains of genetic enhancement that has extensively employed both simulation and authentic data is Biometrics. Selecting efficient models for the Genome-Wide Selection (GWS) process using molecular markers (SNPs) presents several challenges. Among these challenges is the effective identification of the optimal model for fitting a given dataset. To contribute to this endeavor, this paper's primary objective is to assess the predictive accuracy of nine (9) distinct models, each following different paradigms within the realm of Biometrics. The data employed in this study were generated through simulation, encompassing the primary issues encountered in this field of research, including high dimensionality, nonlinearity, and multicollinearity. As the primary findings, notable observations include the enhancement of predictive efficiency as data noise decreases, the predominance of the tree paradigm (for low noise levels, BOO), and the efficacy of the neural network paradigm (for high noise levels, RBF).
Downloads
References
Azodi, C. B., Bolger, E., McCarren, A., Roantree, M., De Los Campos, G., & Shiu, S.-H. (2019). Benchmarking oarametric and machine learning models for genomic prediction of complex traits. G3 Genes|Genomes|Genetics, 9(11), 3691-3702. DOI: https://doi.org/10.1534/g3.119.400498
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. DOI: https://doi.org/10.1007/BF00058655
Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation, and the repeated learning-testing methods. Biometrika, 76(3), 503-514. DOI: https://doi.org/10.2307/2336116
Costa, W. G., Celeri, M. O., Barbosa, I. P., Silva, G. N., Azevedo, C. F., Borém, A., ... Cruz, C. D. (2022). Genomic prediction through machine learning and neural networks for traits with epistasis. Computational and Structural Biotechnology Journal, 20, 5490-5499. DOI: https://doi.org/10.1016/j.csbj.2022.09.029
Cruz, C. D. (2005). Princípios de genética quantitativa. Viçosa, MG: UFV.
Cruz, C. D., Salgado, C. C., & Bhering, L. L. (2013). Genômica aplicada. Visconde do Rio Branco, MG: Suprema.
Cruz, C. D. (2016). Genes Software – extended and integrated with the R, Matlab and Selegen. Acta Scientiarum. Agronomy, 38(4), 547-552. DOI: https://doi.org/10.4025/actasciagron.v38i4.32629
Cruz, C. D., & Nascimento, M. (2018). Inteligência computacional aplicada ao melhoramento genético. Viçosa, MG: UFV.
Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with R Package rrBLUP. The Plant Genome, 4(3), 250-255. DOI: https://doi.org/10.3835/plantgenome2011.08.0024
Ghafouri-Kesbi, F., Rahimi-Mianji, G., Honarvar, M., & Nejati-Javaremi, A. (2017). Predictive ability of random forests, boosting, support vector machines and genomic best linear unbiased prediction in different scenarios of genomic evaluation. Animal Production Science, 57(2), 229-236. DOI: https://doi.org/10.1071/AN15538
Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed). Berlin, GE: Springer.
Haykin, S. S. (2009). Neural networks and learning machines (3rd ed). New Jersey, NY: Prentice Hall.
Izbicki, R., & Santos, T. M. (2020). Aprendizado de máquina: Uma abordagem estatística. São Carlos, SP: Rafael Izbicki. Retrieved on Feb. 10, 2023 from http://www.rizbicki.ufscar.br/AME.pdf
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning: With applications in R (2nd ed.). Berlin, GE: Springer. DOI: https://doi.org/10.1007/978-1-0716-1418-1
Kim, J.-H. (2009). Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis, 53(11), 3735-3745. DOI: https://doi.org/10.1016/j.csda.2009.04.009
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. DOI: https://doi.org/10.1038/nature14539
Li, B., Zhang, N., Wang, Y.-G., George, A. W., Reverter, A., & Li, Y. (2018). Genomic prediction of breeding values using a subset of snps identified by three machine learning methods. Frontiers in Genetics, 9(237), 1-20. DOI: https://doi.org/10.3389/fgene.2018.00237
Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829. DOI: https://doi.org/10.1093/genetics/157.4.1819
Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Multivariate statistical machine learning methods for genomic prediction. Berlin, GE: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-89010-0
Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural Computation, 3(2), 246-257. DOI: https://doi.org/10.1162/neco.1991.3.2.246
Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9(2), 181-199. DOI: https://doi.org/10.1007/s10021-005-0054-1
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Funding data
-
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers Finance Code 001







































