Influence of growing seasons on sweet potato genotype selection for animal feeding

Keywords: Ipomoea batatas L.; genotype x environment interaction; BLUP; genetics; forage; environmental conditions.

Abstract

Environmental conditions significantly impact the performance of sweet potato genotypes, necessitating the study of genotype x environment (GE) interactions to select genotypes adaptable to varying cultivation conditions. This study aimed to assess GE interactions in sweet potatoes for animal feed and identify high-performance genotypes suitable for different seasons. We conducted two tests during the Brazilian winter of 2019 and summer of 2020. Employing a partially balanced triple lattice experimental design with 100 treatments (92 sweet potato genotypes and eight controls) and three replications, we measured vine green matter yield (VGMY), percentage vine dry matter (PVDM), vine dry matter yield (VDMY), percentage of root dry matter (PRDM), and roots dry matter yield (RDMY). We ranked genotypes, highlighting the best performers for individual and combined seasons. Significant differences in VGMY, PRDM, and RDMY were observed for GE interaction. VGMY, VDMY, and PRDM favored the summer season, while PVDM and RDMY performed better in the winter season. Genotypes 2018-31-713, 2018-72-1438, 2018-31-666, 2018-12-252, 2018-19-461, 2018-19-389, 2018-38-946, 2018-31-689, and 2018-37-864 proved most suitable for VGMY and VDMY across growing seasons. Genotypes 2018-28-514, 2018-15-268, and 2018-19-443 demonstrated potential in percentage vine dry matter. Genotypes 2018-31-666, 2018-72-1438, and 2018-15-277 are recommended for PRDM in both seasons. Genotypes 2018-19-464, 2018-28-556, 2018-55-1154, 2018-28-543, 2018-53-1038, 2018-72-1432, and 2018-19-443 exhibited greater potential for RDMY, making them ideal for animal feed in both growing seasons.

Downloads

Download data is not yet available.

References

Andrade Júnior, V. C., Pereira, R. C., Dornas, M. F.S., Ribeiro, K. G., Valadares, N. R., Santos, A. A., & Castro, B. M. C. (2014). Produção de silagem, composição bromatológica e capacidade fermentativa de ramas de batata-doce emurchecidas. Horticultura Brasileira, 32(1), 91-7. DOI: https://doi.org/10.1590/S0102-05362014000100015

Andrade Júnior, V. C., Elsayed, A. Y. A. M., Azevedo, A. M., Santos, E. A., & Ferreira, M. A. M. (2018). Potencial quantitativo e qualitativo de genótipos batata-doce. Scientia Agraria, 19(1), 28-35. DOI: https://doi.org/10.5380/rsa.v19i1.50158

Andrade Júnior, V. C., Donato, L. M. S., Azevedo, A. M., Guimarães, A. G., Brito, O. G., Oliveira, D. M., … Silva, L. R. (2020). Association between agronomic characters and hay quality of sweet potato branches. Horticultura Brasileira, 38(1), 27-32. DOI: https://doi.org/10.1590/S0102-053620200104

Azevedo, A. M., Andrade Júnior, V. C., Viana, D. J. S., Elsayed, A. Y. A. M., Pedrosa, C. E., Neiva, I. P., Figueiredo, J. A. (2014). Influence of harvest time and cultivation sites on the productivity and quality of sweet potato. Horticultura Brasileira, 32(1), 21-27. DOI: https://doi.org/10.1590/S0102-05362014000100004

Baba, M., Nasiru, A., Karkarna, I. S., Muhammad, I. R., & Rano, N. B. (2018). Nutritional evaluation of sweet potato vines from twelve cultivars as feed for ruminant animals. Asian Journal of Animal and Veterinary Advances, 13(1), 25-29. DOI: https://doi.org/10.3923/ajava.2018.25.29

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. DOI: https://doi.org/10.18637/jss.v067.i01

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B (Methodology), 26(2), 211-243. DOI: https://doi.org/10.1111/j.2517-6161.1964.tb00553.x

Bueno Filho, J. S. S., & Gilmour, S. G. (2003). Planning incomplete block experiments when treatments are genetically related. Biometrics, 59(2), 375-381. DOI: https://doi.org/10.1111/1541-0420.00044

Costa, A. L., Andrade Júnior, V. C., Gama, A. B. N., Silva, E. A., Brito, O. G., Silva, J. C. O., & Bueno Filho, J. S. S. (2022). Selection of superior sweet potato genotypes for human consumption via mixed models. Bragantia, 81, 1-14. DOI: https://doi.org/10.1590/1678-4499.20220075

Dewi, R., Utomo, S. D., Kamal, M., Timotiwu, P. B., & Nurdjanah, S. (2019). Genetic and phenotypic diversity, heritability, and correlation between the quantitative characters on 30 sweet potato germplasms in Lampung, Indonesia. Biodiversitas, 20(2), 380-386. DOI: https://doi.org/10.13057/biodiv/d200211

Donato, L. M. S., Andrade Júnior, V. C., Brito, O. G., Fialho, C. M. T., Silva, A. J. M., & Azevedo, A. M. (2020). Uso de ramas de batata-doce para produção de feno. Ciência Animal Brasileira, 21, 1-12. DOI: https://doi.org/10.1590/1809-6891v21e-53493

Ebem, E. C., Afuape, S. O., Chukwu, S. C., & Ubi, B. E. (2021). Genotype × environment interaction and stability analysis for root yield in sweet potato [Ipomoea Batatas (L.) Lam]. Frontiers in Agronomy, 3, 1-14. DOI: https://doi.org/10.3389/fagro.2021.665564

Galla, N. A., Nampija, Z., Lutwama, V., Mayanja, S., Grant, F., Kyalo, G., … Nambi-Kasozi, J. (2020). Effects of inclusion levels of sweet potato vine silage on feed intake, milk production and profitability of lactating crossbred dairy cows. Open Journal of Animal Sciences, 10(3), 608-617. DOI: https://doi.org/10.4236/ojas.2020.103039

Gasura, E., Matsaure, F., Setimela, P. S., Rugare, J. T., Nyakurwa, C. S., & Andrade, M. (2021). Performance, variance components, and acceptability of Pro-vitamin A-biofortified sweet potato in Southern Africa and implications in future breeding. Frontiers in Plant Science, 12(696738), 1-10. DOI: https://doi.org/10.3389/fpls.2021.696738

Gonçalves Neto, A. C., Maluf, W. R., Gomes, L. A. A., Gonçalves, R. J. S., Silva, V. F., & Lasmar, A. (2011). Aptidões de genótipos de batata‑doce para consumo humano, produção de etanol e alimentação animal. Pesquisa Agropecuária Brasileira, 46(11), 1513-1520. DOI: https://doi.org/10.1590/S0100-204X2011001100013

Instituto Nacional de Meteorologia [INMET]. (2022). Dados meteorológicos: tabela de dados das estações – Lavras (83687). Retrieved on Nov. 23, 2022 from https://tempo.inmet.gov.br/TabelaEstacoes/A515

Kagimbo, F., Shimelis, H., & Sibiya, J. (2019). Combining ability, gene action and heritability of weevil resistance, storage root yield and yield related-traits in sweet potato. Euphytica, 215(13), 1-17. DOI: https://doi.org/10.1007/s10681-019-2338-0

Karan, Y. B., & Şanli, Ö. G. (2021). The assessment of yield and quality traits of sweet potato (Ipomoea batatas L.) genotypes in middle Black Sea region, Turkey. PLoS ONE, 16(9), 1-11. DOI: https://doi.org/10.1371/journal.pone.0257703

King, J. R., & Bamford, R. (1937). The chromosome number in Ipomea and related genera. Journal of Heredity, 28(8), 279-282. DOI: https://doi.org/10.1093/oxfordjournals.jhered.a104385

Klinger, A. C. K., Silva, L. P., Toledo, G. S. P., Falcone, D. B., & Goulart, F. R. (2018). Sweet potato vines in diets for growing rabbits on performance, carcass characteristics and meat quality. Animal Science Journal, 89(11), 1556-1560. DOI: https://doi.org/10.1111/asj.13105

Mahmud, A. A., Hassan, M. M., Alam, M. J., Molla, M. S. H., Ali, M. A., Mohanta, H. C., … Hossain, A. (2021). Farmers’ preference, yield, and GGE-Biplot analysis-based evaluation of four sweet potato (Ipomoea batatas L.) varieties grown in multiple environments. Sustainability, 13(7), 1-14. DOI: https://doi.org/10.3390/su13073730

Melesse, A., Chalew, N., & Nurfeta, A. (2020). Effect of sweet potato leaf supplementation on growth and nutrient digestibility in sheep. Scientia Agriculturae Bohemica, 51(2), 51-57. DOI: https://doi.org/10.2478/sab-2020-0007

Molina, I., & Marhuenda, Y. (2015). sae: An R package for small area estimation. The R Journal, 7(1), 81-98. DOI: https://doi.org/10.32614/RJ-2015-007

Montes, S. M. N. M. (2013). Cultura da batata-doce: do plantio à comercialização. São Paulo, SP: Agência Paulista de Tecnologia dos Agronegócios.

Mustamu, Y. A., Tjintokohadi, K., Gruneberg, W. J., Karuniawan, A., & Ruswandi, D. (2018). Selection of Superior genotype of Sweet-potato in Indonesia based on stability and adaptability. Chilean Journal of Agricultural Research, 78(4), 461-469. DOI: https://doi.org/10.4067/S0718-58392018000400461

Ngailo, S., Shimelis, H., Sibiyab, J., Mtunda, K., & Mashilo, J. (2019). Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon, 5(3), 1-23. DOI: https://doi.org/10.1016/j.heliyon.2019.e01448

Nigussie, Z. T., Gebeyehu, S. A., Mulugeta, S. M., & Guadie, Y. F. (2022). Genotype by environmental interaction and measurements of stability on eight orange-fleshed sweet potato (Ipomoea batatas) varieties: East gojjam zone, North West Ethiopia. Advances in Agriculture, 2022, 1-7. DOI: https://doi.org/10.1155/2022/3117092

Njiti, V. N., Xia, Q., Tyler, L. S., Stewart, L. D., Tenner, A. T., Zhang, C., … Gao, M. (2013). Influence of prohexadione calcium on sweet potato growth and storage root yield. HortScience, 48(1), 73-76. DOI: https://doi.org/10.21273/HORTSCI.48.1.73

Oladeji, D. D., Akinbola, E. T., Faniyi, T. O., Tirado-Estrada, G., & Molina, O. M. (2022). Converting the waste of orange fleshed sweet potato biomass to improve performance characteristics and vitamin profile of broiler chickens. Waste and Biomass Valorization, 13(12), 4813-4821. DOI: https://doi.org/10.1007/s12649-022-01839-1

Oliveira, G. J. A., Zeist, A. R., Toroco, B. R., Garcia Neto, J., Leal, M. H. S., Silva Júnior, A., ... Leal, J. L. P. (2022). Agronomic performance of experimental white-fleshed sweet potato genotypes in commercial fields. Horticultura Brasileira, 40(3), 342-347. DOI: https://doi.org/10.1590/s0102-0536-20220314

Pedrosa, C. E., Andrade Júnior, V. C., Pereira, R. C., Dornas, M. F. S., Azevedo, A. M., & Ferreira, M. A. M. (2015). Yield and quality of wilted sweet potato vines and its silages. Horticultura Brasileira, 33(3), 283-289. DOI: https://doi.org/10.1590/S0102-053620150000300002

Peixoto, C. P. (2020). Princípios de fisiologia vegetal: teoria e prática. Rio de Janeiro, RJ: Pod Editora.

Persichetti Júnior, P., Almeida Júnior, G. A., Costa, C., Meirelles, P. R. L., Silveira, J. P. F., Panichi, A., ... Mendonça, S. A. (2014). Nutritional value of high moisture corn silage in the diet of Holstein cows. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 66(5), 1495-1503. DOI: https://doi.org/10.1590/1678-5999

R Core Team (2022). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on Nov. 23, 2022 from https://www.R-project.org/

Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., & Firth, D. (2022). Support functions and datasets for venables and Ripley's MASS. R Package Version 7.3–57. Retrieved on Nov. 23, 2022 from https://cran.r-project.org/web/packages/MASS/MASS.pdf

Rukundo, P., Shimelis, H., Laing, M., & Gahakwa, D. (2017). Combining ability, maternal effects, and heritability of drought tolerance, yield and yield components in sweet potato. Frontiers in Plant Science, 7, 1-14. DOI: https://doi.org/10.3389/fpls.2016.01981

Santos, E. R., Spehar, C. R., Capone, A., & Pereira, P. R. (2018). Estimativa de parâmetros de variação genética em progênies F2 de soja e genitores com presença e ausência de lipoxigenases. Nucleus, 15, 61-70. DOI: https://doi.org/10.3738/1982.2278.2169

Santos, A. A., Andrade Júnior, V. C., Fialho, C. M. T., Azevedo, A. M., Brito, O. G., Viana, A. J. S., & Guimarães, A. G. (2019). Effect of debranching on sweet potato yield and quality. Australian Journal of Crop Science, 13(10), 1712-1722. DOI: https://doi.org/10.21475/ajcs.19.13.10.p2026

Senff, S. E., Milcheski, V. F., Konkol, A. C. B., & Fioreze, A. C. C. L. (2021). Genotype × environment effects on morphological and productive components of sweet potato (Ipomoea Batatas L.). Colloquium Agrariae, 17(5), 7-15. DOI: https://doi.org/10.5747/ca.2021.v17.n5.a455

Silva, G. O., Ponijaleki, R., & Suinaga, F. A. (2012). Divergência genética entre acessos de batata-doce utilizando caracteres fenotípicos de raiz. Horticultura Brasileira, 30(4), 595-599. DOI: https://doi.org/10.1590/S0102-05362012000400006

Silva, J. C. O., Andrade Júnior, V. C., Bueno Filho, J. S. S., Brito, O. G., Lopes, T. C., Pereira, A. G., ... Firme, T. D. (2022). Mixed model-based indices for selection of sweet potato genotypes for different agronomic aptitudes. Euphytica, 218(86), 1-17. DOI: https://doi.org/10.1007/s10681-022-03033-9

Sun, B., Wang, R., Yue, Z., Zheng, H., Zhou, Q., Bao, C., … Ma, Q. (2023). Effects of sweet potato vine silage supplementation on meat quality, antioxidant capacity and immune function in finishing pigs. Journal of Animal Physiology and Animal Nutrition, 107(2), 556-563. DOI: https://doi.org/10.1111/jpn.13737

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6. ed.). Porto Alegre, RS: Artmed.

Tessema, G. L., Mohammed, A. W., & Abebe, D. T. (2022). Genetic variability studies for tuber yield and yield attributes in Ethiopian released potato (Solanum tuberosum L.) varieties. PeerJ, 10(1), 1-14. DOI: https://doi.org/10.7717/peerj.12860

Viana, D. J. S., Andrade Júnior, V. C., Ribeiro, K. G., Pinto, N. A. V. D., Neiva, I. P., Figueiredo, J. A., ... Azevedo, A. M. (2011). Potencial de silagens de ramas de batata-doce para alimentação animal. Ciência Rural, 41(8), 1466-1471. DOI: https://doi.org/10.1590/S0103-84782011000800027

Villavicencio, L. E., Blankenship, S. M., Yencho, G. C., Thomas, J. F., & Raper, C. D. (2007). Temperature effect on skin adhesion, cell wall enzyme activity, lignin content, anthocyanins, growth parameters, and periderm histochemistry of sweet potato. Journal of the American Society for Horticultural Science, 132(5), 729-738. DOI: https://doi.org/10.21273/JASHS.132.5.729

Vital, A. N. S., Benício, V. C., Lins, Y. L. F., Viana, K. W. C., & Messias, C. M. B. O. (2023). Physicochemical composition and antioxidant activity of sweet potato flours from different cultivars produced in the Sub-middle São Francisco region. Ciência Rural, 53(3), 1-11. DOI: https://doi.org/10.1590/0103-8478cr20210718

Zhang, J. J., Yue, Z. Y., Sun, Y. C., Wang, Z. S., Zhang, Y. M., Huang, L. B., … Ma, Q. (2022). Effects of sweet potato vine silage supplementation on growth performance, nutrient digestibility, and intestinal health in finishing pigs. Czech Journal of Animal Science, 67(6), 218-227. DOI: https://doi.org/10.17221/209/2021-CJAS

Published
2024-11-07
How to Cite
Costa, A. L. da, Brito, O. G., Andrade Júnior, V. C. de, Silva, E. A. da, Gama, A. B. N. da, Santos, M. A. V., Castro, M. A. S. de, & Bueno Filho, J. S. de S. (2024). Influence of growing seasons on sweet potato genotype selection for animal feeding . Acta Scientiarum. Agronomy, 47(1), e68606. https://doi.org/10.4025/actasciagron.v47i1.68606

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus