Thermodynamic properties of moisture sorption of soybean (Glycine max L.) grains

  • Juliana Soares Zeymer Universidade Federal de Viçosa
  • Paulo Cesar Corrêa Universidade Federal de Viçosa
  • Gabriel Henrique Horta de Oliveira Instituto Federal do Sudeste de Minas Gerais https://orcid.org/0000-0002-6066-9262
  • Marcos Eduardo Viana de Araújo Universidade Federal de Viçosa
Keywords: gibbs free energy; differential enthalpy; isosteric heat; differential entropy.

Abstract

This study investigated the thermodynamic properties of water sorption in soybean using the DM 68I69 Ipro variety from Campo Verde, Mato Grosso, Brazil. Grains with initial moisture contents of 21.95% (w.b.) and 3.50% (w.b.) were used for desorption and adsorption analyses, respectively. The static-gravimetric method determined equilibrium moisture content at various temperatures (10, 20, 30, 40, and 50°C) and relative humidity (between 0.11 and 0.92 ± 2%). The Modified Halsey model quantified the hygroscopicity of soybean. Key findings include: (a) desorption equilibrium moisture content exceeded adsorption values, demonstrating hysteresis; (b) decreasing equilibrium moisture content increased the energy required for water removal and its release during adsorption; (c) differential entropy of desorption and adsorption increased with decreasing equilibrium moisture content; (d) Gibbs free energy decreased with increasing temperature for both desorption and adsorption. The enthalpy-entropy compensation theory effectively described the observed phenomena.

Downloads

Download data is not yet available.

Author Biography

Gabriel Henrique Horta de Oliveira, Instituto Federal do Sudeste de Minas Gerais

Campus Manhuaçu

References

Arslan-Tontul, S. (2020). Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. LWT, 119, e108859. https://doi.org/10.1016/j.lwt.2019.108859

Aviara, N. A., Ojediran, J. O., Marwan, S. I. U., & Raji, A. O. (2016). Effect of moisture sorption hysteresis on thermodynamic properties of two millet varieties. Agricultural Engineering International: CIGR Journal, 18(1), 363-383.

Basu, S., Shivhare, U. S., & Muley, S. (2013). Moisture adsorption isotherms and glass transition temperature of pectin. Journal of Food Science and Technology, 50, 585-589. https://doi.org/10.1007/s13197-011-0327-y.

Bonner, I. J., & Kenney, K. L. (2013). Moisture sorption characteristics and modeling of energy sorghum (Sorghum bicolor (L) Moench). Journal of Stored Products Research, 52, 128-136. https://doi.org/10.1016/j.jspr.2012.11.002

Bustos-Vanegas, J. D., Corrêa, P. C., Zeymer, J. S., Baptestini, F. M., & Campos, R. C. (2018). Moisture sorption isotherms of quinoa seeds: Thermodynamic analysis. Engenharia Agrícola, 38(6), 941-950. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n6p941-950/2018

Campos, R. C., Corrêa, P. C., Zaidan, I. R., Zaidan, U. R., & Leite, R. A. (2019). Moisture sorption isotherms of sunflower seeds: Thermodynamic analysis. Ciencia & Agrotecnologia, 43, 1-12. https://doi.org/10.1590/1413-7054201943011619

Corrêa, P. C., Oliveira, G. H. H., Botelho, F. M., Goneli, A. L. D., & Carvalho, F. M. (2010). Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, 57(5), 595-601. https://doi.org/10.1590/S0034-737X2010000500005

Corrêa, P. C., Baptestini, F. M., Vanegas, J. D. B., Leite, R., Botelho, F. M., & Oliveira, G. H. H. (2017). Kinetics of water sorption of damaged bean grains: Thermodynamic properties. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(8), 556-561. https://doi.org/10.1590/1807-1929/agriambi.v21n8p556-561

Goneli, A. L. D., Corrêa, P. C., Oliveira, G. H. H., Oliveira, A. P. L. R., & Orlando, R. C. (2016). Moisture sorption isotherms of castor beans. Part 2: Thermodynamic properties. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(8), 757-762. https://doi.org/10.1590/1807-1929/agriambi.v20n8p757-762

Hassini, L., Bettaieb, E., Desmorieux, H., Torres, S. S., & Touil, A. (2015). Desorption isotherms and thermodynamic properties of prickly pear seeds. Industrial Crops and Products, 67, 457-465. https://doi.org/10.1016/j.indcrop.2015.01.078

Koua, B. K., Koffi, P. M. E., Gbaha, P., & Toure, S. (2014). Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta). Journal of Food Science and Technology, 51, 1711-1723. https://doi.org/10.1007/s13197-012-0687-y

Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976a). Enthalpy-entropy compensation. 1 - Some fundamental statistical problems associated with the analysis of Van’t Hoff and Arrhenius data. Journal of Physical Chemistry, 80(21), 2335-2341. https://doi.org/10.1021/j100562a006

Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976b). Enthalpy-entropy compensation. 2 - Separation of the chemical from the statistical effect. Journal of Physical Chemistry, 80(21), 2341-2351. https://doi.org/10.1021/j100562a007

Lago, C. C., Liendo-Cárdenas, M., & Noreña, C. P. Z. (2013). Thermodynamic sorption properties of potato and sweet potato flakes. Food and Bioproducts Processing, 91(4), 389-395. https://doi.org/10.1016/j.fbp.2013.02.005

Leffler, J. E. (1955). The enthalpy-entropy relationship and its implications for organic chemistry. The Journal of Organic Chemistry, 20(9), 1202-1231. https://doi.org/10.1021/jo01126a009

Montanuci, F. D., Jorge, L. M. M., & Jorge, R. M. M. (2013). Kinetic, thermodynamic properties, and optimization of barley hydration. Food Science and Technology, 33(4), 690-698. https://doi.org/10.1590/S0101-20612013000400014

Naveen Kumar, M., & Das, S. K. (2015). Moisture sorption isotherms of preconditioned pressure parboiled brown rice. Journal of Food Processing & Technology, 6(12), 1-9. https://doi.org/10.4172/2157-7110.1000519

Resende, O., Oliveira, D. E. C., Costa, L. M., & Ferreira Júnior, W. N. (2017). Thermodynamic properties of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, 37(4), 739-749. https://doi.org/10.1590/1809-4430-Eng.Agric.v37n4p739-749/2017

Rosa, D. P., Villa-Vélez, H. A., & Telis-Romero, J. (2013). Study of the enthalpy-entropy mechanism from water sorption of orange seeds (C. sinensis cv. Brazilian) for the use of agro-industrial residues as a possible source of vegetable oil production. Food Science and Technology, 33(suppl. 1), 95-101. https://doi.org/10.1590/S0101-20612013000500015

Silva, D. A., & Pena, R. S. (2018). Thermodynamic properties of Buriti (Mauritia flexuosa) tree gum. Food Science and Technology, 38(3), 390-398. https://doi.org/10.1590/fst.02917

Silva, H. W., Rodovalho, R. S., & Silva, I. L. (2018). Hysteresis and thermodynamic properties of water sorption of ‘MalagXeta’ pepper seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(9), 658-663. https://doi.org/10.1590/1807-1929/agriambi.v22n9p658-663

Simón, C., Esteban, L. G., Palacios, P., Fernández, F. G., & García-Iruela, A. (2016). Thermodynamic properties of the water sorption isotherms of wood of limba (Terminalia superba Engl. & Diels), obeche (Triplochiton scleroxylon K. Schum.), radiate pine (Pinus radiate D. Don) and chestnut (Castanea sativa Mill.). Industrial Crops and Products, 94, 122-131. https://doi.org/10.1016/j.indcrop.2016.08.008

Slavutsky, A. M., & Bertuzzi, M. A. (2015). Thermodynamic study of water sorption and water barrier properties of nanocomposite films based on brea gum. Applied Clay Science, 108, 144-148. https://doi.org/10.1016/j.clay.2015.02.011

Sousa, K. A., Resende, O., Goneli, A. L. D., Smaniotto, T. A. S., & Oliveira, D. E. C. (2015). Thermodynamic properties of water desorption of forage turnip seeds. Acta Scientiarum. Agronomy, 37(1), 11-19. https://doi.org/10.4025/actasciagron.v37i1.19333

Souza, S. J. F., Alves, A. I., Vieira, E. N. R., Vieira, J. A. G., Ramos, A. M., & Telis-Romero, J. (2015). Study of thermodynamic water properties and moisture sorption hysteresis of mango skin. Food Science and Technology, 35(1), 157-166. https://doi.org/10.1590/1678-457X.6557

Spada, J. C., Noreña, C. P. A., Marczak, L. D. F., & Tessaro, I. C. (2013). Water adsorption isotherms of microcapsules with hydrolyzed pinhão (Araucaria angustifolia seeds) starch as wall material. Journal of Food Engineering, 114(1), 64-69. https://doi.org/10.1016/j.jfoodeng.2012.07.019

Teixeira, L. P., Andrade, E. T., & Devilla, I. A. (2018). Isosteric heat, entropy and gibbs free energy of pumpkin seeds (Cucurbita moschata). Engenharia Agrícola, 38(1), 97-102. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p97-102/2018

Velázquez-Gutiérrez, S. K., Figueira, A. C., Rodríguez-Huezo, M. E., Román-Guerrero, A., Carrillo-Navas, H., & Pérez-Alonso, C. (2015). Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.). Carbohydrate Polymers, 121, 411-419. https://doi.org/10.1016/j.carbpol.2014.11.068

Zeymer, J. S., Correa, P. C., Oliveira, G. H. H., Araújo, M. E. V., Guzzo, F., & Baptestini, F. M. (2022). Moisture sorption isotherms and hysteresis of soybean grains. Acta Scientiarum. Agronomy, 45(1), 1-11. https://doi.org/10.4025/actasciagron.v45i1.56615

Zeymer, J. S., Corrêa, P. C., Oliveira, G. H. H., & Baptestini, F. M. (2018a). Thermodynamic properties of water desorption in lettuce seeds. Semina: Ciências Agrárias, 39(3), 921-932. https://doi.org/10.5433/1679-0359.2018v39n3p921

Zeymer, J. S., Corrêa, P. C., Oliveira, G. H. H., Baptestini, F. M., & Faria, I. L. (2018b). Thermodynamic properties of sorption of rice in the husk. Engenharia Agrícola, 38(3), 369-375. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n3p369-375/2018

Published
2025-03-25
How to Cite
Zeymer, J. S., Corrêa, P. C., Oliveira, G. H. H. de, & Araújo, M. E. V. de. (2025). Thermodynamic properties of moisture sorption of soybean (Glycine max L.) grains. Acta Scientiarum. Agronomy, 47(1), e70140. https://doi.org/10.4025/actasciagron.v47i1.70140
Section
Agricultural Engineering

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus