Multivariate approach for identifying wheat Triticum aestivum L. tolerant to heat and drought stress
Abstract
Breeding wheat for production in the Brazilian Cerrado region should aim at developing productive genotypes adapted to heat and drought conditions; therefore, this study evaluated the tolerance of wheat cultivars to heat/thermal and drought stress. To meet this objective, 30 wheat cultivars were cultivated in 3 greenhouse environments, namely control, drought, and heat, applying stress from the booting stage to the end of anthesis. The following parameters were evaluated: cycle, plant height, spike number per plant, spike length, spike weight, spikelet number per spike, percentage of fertile spikelets, number of grains per spike, and grain weight per spike. Principal component analysis and cluster analysis were performed by the Ward and “K-means” methods. Principal component analysis showed that the correlations between the productivity traits and the principal components were more affected by drought than by the control and heat environments. The cluster analyses formed five clusters for the control and heat environments and seven clusters for the drought environment. Grain productivity was highlighted in the heat environment for ‘BRS 210’, ‘BR18 Terena’, ‘IPR Catuara TM’, ‘CD 154’, ‘BR 220’, ‘MGS Aliança’, ‘IAC 350’, ‘IAC Tucunaré’, ‘BR 24’, ‘IAC 5 Maringá’, ‘UFVT1 Pioneiro’, and ‘CD 151 4’ with a positive relationship in principal component analysis. Considering spikelet number per spike in the drought environment, cultivars ‘BRS 208’, ‘IAC 350’, ‘Supera’, ‘BRS 210’, ‘IPR 85’, ‘IPR Catuara TM’, ‘Anahuac 73’, ‘BR 24’, ‘IAC 5 Maringá’, and ‘UFVT1 Pioneiro’ were highlighted. In the drought environment, most of the productivity-related traits exhibited components with negative relationships among cultivars and the evaluated traits, confirming their response to the induced stress.
Downloads
References
Asseng, S., & Van Herwaarden, A. F. (2003). Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant and Soil, 256, 217-229. https://doi.org/10.1023/A:1026231904221
Bänziger, M., Edmeades, G. O., Beck, D., & Bellon, M. (2000). Breeding for drought and nitrogen stress tolerance in maize. CIMMYT.
Bennani, S., Nsarellah, N., Birouk, A., Ouabbou, H., & Tadesse, W. (2016). Effective selection criteria for screening drought tolerant and high yielding bread wheat genotypes. Universal Journal of Agricultural Research, 4(4), 134-142. https://hdl.handle.net/20.500.11766/6031
Bigolin, T., & Talamini, E. (2024). Impacts of climate change scenarios on the corn and soybean double-cropping system in Brazil. Climate, 12(3), 1-21. https://doi.org/10.3390/cli12030042
Camargo, C. E. O., Ferreira Filho, A. W. P., & Felicio, J. C. (1998). Herdabilidade e correlações entre características agronômicas em populações híbridas de trigo. Bragantia, 57(1), 93-104. https://doi.org/10.1590/S0006-87051998000100011
Cargnin, A., Souza, M. A., Rocha, V. S., Machado, J. C., & Piccini, E. (2006). Tolerância ao estresse térmico em genótipos de trigo. Pesquisa Agropecuária Brasileira, 41(8), 1269-1276. https://doi.org/10.1590/S0100-204X2006000800009
Companhia Nacional de Abastecimento [CONAB]. (2023). Produção de grãos na safra 2023-24 deve atingir 312,3 milhões de toneladas, influenciada por clima. https://www.conab.gov.br/ultimas-noticias/5313-producao-de-graos-na-safra-2023-24-deve-atingir-312-3-milhoes-de-toneladas-influenciada-por-clima
Companhia Nacional de Abastecimento [CONAB]. (2022). Acompanhamento da safra Brasileira de grãos, v.4 - Safra 2022, Relatório sobre Importação de Trigo e Expansão de Áreas de Cultivo. http://www.conab.gov.br
Cruz, C. D., Carneiro, P. C. S., & Regazzi, A. J. (2014). Modelos biométricos aplicados ao melhoramento genético. UFV.
Cunha, G. R., Pasinato, A., Pires, J. L. F., Dalmago, G. A., Santi, A. & Gouvea, J. A. (2016). Bioclimatologia e zoneamento agrícola. In C. De Mori, J. M. Antunes, G. S. Fae, & A. S. Acosta (Eds.), Trigo: o produtor pergunta, a Embrapa responde (pp. 31-57). Embrapa.
Dallastra, A., Unêda-Trevisoli,S. H., Ferraudo, A, S., & Di Mauro, A. O. (2014). Multivariate approach in the selection of superior soybean progeny which carry the RR gene. Revista Ciência Agronômica, 45(3), 588-597. https://doi.org/10.1590/S1806-66902014000300021
Dias, A. S., Bagulho, A. S., & Lidon, F. C. (2008). Ultrastructure and biochemical traits of bread and durum wheat grains under heat stress. Brazilian Journal of Plant Physiology, 20(4), 323-333. https://doi.org/10.1590/S1677-04202008000400008
Dolferus, R., Ji, X., & Richards, R. A. (2011). Abiotic stress and control of grain number in cereals. Plant Science, 181(4), 331-341. https://doi.org/10.1016/j.plantsci.2011.05.015
Farooq, M., Bramley, H., Ppha, J. A., & Siddique, K (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30, 491-507. https://doi.org/10.1080/07352689.2011.615687
Ferraudo, A. S. (2008). Análise Multivariada na compactação de um latossolo vermelho cultivado com milho. Revista Brasileira de Ciência do Solo, 32, 953-961.
Fornasieri Filho, D. (2008). Manual da cultura do trigo. Funep.
Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis. Pearson Prentice Hall.
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200. https://doi.org/10.1007/BF02289233
Oliveira, D. M., Souza, M. A., Rocha, V. S., & Assis, J. C. (2011). Desempenho de genitores e populações segregantes de trigo sob estresse de calor. Bragantia, 70(1), 25-32. https://doi.org/10.1590/S0006-87052011000100005
Ribeiro júnior, W. Q., Ramos, M. L. G.,Vasconcelos, U., Trindade, M. G., Ferreira, F. M., Siqueira, M. M. H., Silva, H. L. M., Rodrigues, G. C., Guerra, A. F., Rocha, O. C., Amábile, R. F., Albuquerque, A. C., Só e Silva, M., Albrecht, J. C., & Durães, F. O. M. (2006). Fenotipagem para tolerância à seca visando o melhoramento genético do trigo no cerrado (Circular Técnica, 21). Embrapa Trigo.
Rodrigues, O., Lhamby, J. C. B., Didonet, A. D., Marchese, J. A., & Scipioni, C. (1998). Efeito da deficiência hídrica na produção de trigo. Pesquisa Agropecuaria Brasileira, 33(6), 839-846.
Saini, D., & Lalonde, S. (1998). Injuries to reproductive development under water stress, and their consequences for crop productivity. In A. S. Basra (Ed.), Reviews in plant biochemistry and biotechnology (pp. 223-248). Food Products Press.
Sleeper, D. A., & Poehlman, J. M. (2006). Breeding field crops. Blackwell Pub Iowa.
Souza, M. A., & Pimentel, A. J. B. (2013). Estratégias de seleção para melhoramento do trigo com tolerância ao estresse por calor. Informe Agropecuário, 34(274), 30-39.
Souza, M. A., Pimentel, A. J. B., & Riberio, G. (2011). Melhoramento para tolerância ao calor. In R. Fritsche-Neto, & A. Borém (Eds.), Melhoramento de plantas para condições de estresses abióticos (pp. 199-226). Suprema.
Spher, P. J. (1967). Cereals. In P. J. Spher, & J. E. Goode (Eds.), Crop responses to water at different stages of growth (pp. 15-48). Commonw Agricultural Bureau.
Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code the growth stage of cereals. Weed Research, 14(6), 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.