High-density pecan trees subjected to hedge and central pruning and thinning in southern Brazil
Abstract
Several high-density pecan orchards have exhibited unsatisfactory growth and production due to excessive shading. This study aimed to investigate hedge and central pruning and tree thinning as alternative solutions to increase the vegetative growth and production of pecan trees in high-density orchards. The experiment was conducted in Santa Rosa, Rio Grande do Sul State, Brazil, using a randomized block design with three replicates, each consisting of five trees. Treatments included: i) control (no treatment), ii) hedge pruning, iii) central pruning, and iv) tree thinning (tree removal). We evaluated vegetative growth, the number of dry branches, and aspects related to production and production efficiency. Tree thinning resulted in increased transverse width, canopy volume, and the number of basal branches, along with a decrease in dry branches per tree. Production was higher in trees subjected to thinning (42.89%), followed by central pruning (39.80%) and hedge pruning (37.03%), compared to the control. The average yield was higher than the control after both pruning methods; hedge and central pruning increased yield by 37.20 and 39.85%, respectively. However, tree thinning decreased yield by 10.80%. Trees subjected to hedge pruning achieved higher production efficiency relative to canopy volume than the control, while, concerning trunk cross-sectional area, tree thinning was more efficient than the control. Tree thinning increases vegetative growth, production, and production efficiency, while hedge pruning and central pruning lead to higher yields.
Downloads
References
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507
Anthony, B. M., Serra, S., & Musacchi, S. (2020). Optimization of light interception, leaf area and yield in “WA38”: Comparisons among training systems, rootstocks and pruning techniques. Agronomy, 10(5), 1-19. https://doi.org/10.3390/agronomy10050689
Azevedo, F. A., Pacheco, C. A., Schinor, E. H., Carvalho, S. A., & Conceição, P. M. (2015). Produtividade de laranjeira Folha Murcha enxertada em limoeiro Cravo sob adensamento de plantio. Bragantia, 74(2), 184-188. https://doi.org/10.1590/1678-4499.0374
Carra, B., Pasa, M. S., Fachinello, J. C. Spagnol, D., Abreu, E. S., & Giovanaz, M. A. (2016). Prohexadione calcium affects shoot growth, but not yield components, of “Le Conte” pear in warm-winter climate conditions. Scientia Horticulturae, 209, 241-248. https://doi.org/10.1016/j.scienta.2016.06.036
Crosa, C. F. R., Marco, R., Souza, R. S., & Martins, C. R. (2020). Tecnologia de produção de noz-pecã no sul do Brasil. Revista Científica Rural, 22(2), 249-262. https://doi.org/10.30945/rcr-v22i2.3170
Durand, M., Murchie, E. H., Lindfors, A. V., Urban, O., Aphalo, P. J., & Matthew Robson, T. (2021). Diffuse solar radiation and canopy photosynthesis in a changing environment. Agricultural and Forest Meteorology, 311, 1-13. https://doi.org/10.1016/j.agrformet.2021.108684
Fernández-Chávez, M., Guerrero-Morales, S., Palacios-Monárrez, A., Uranga-Valencia, L. P., Escalera-Ochoa, L., & Pérez-Álvarez, S. (2021). Análisis de diversos aspectos económicos de la producción en huertas de nogales de alta y baja densidad. Estudio de caso. Cultivos Tropicales, 42(2), 1-14.
Ferreira, D. F. (2014). Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109-112. https://doi.org/10.1590/s1413-70542014000200001
Fronza, D., Hamann, J. J., Both, V., Anese, R. O., & Meyer, E. A. (2018). Pecan cultivation: general aspects. Ciência Rural, 48(2), 1-9. https://doi.org/10.1590/0103-8478cr20170179
Gong, Y., Pegg, R. B., Kerrihard, A. L., Lewis, B. E., & Heerema, R. J. (2020). Pecan kernel phenolics content and antioxidant capacity are enhanced by mechanical pruning and higher fruit position in the tree canopy. Journal of the American Society for Horticultural Science, 145(3), 193-202. https://doi.org/10.21273/jashs04810-19
Hellwig, C. G., Martins, C. R., Lima, A. D.V., Barreto, C.F., Medeiros, J. C.F., & Malgarim, M. B. (2022). Hedge and central pruning in a high-density pecan orchard in southern Brazil. Comunicata Scientiae, 13, 1-7. https://doi.org/10.14295/cs.v13.3842
Khalil, S. K., Mexal, J. G., Khalil, I. H., Wahab, S., Rehman, A., Hussain, Z., Khan, A., Khan, A. Z., & Khattak, M. K. (2016). Foliar ethephon fruit thinning improves nut quality and could manage alternate bearing in pecan. The Pharmaceutical and Chemical Journal, 3(4), 150-156.
Li, Q., Gao, Y., Wang, K., Feng, J., Sun, S., Lu, X., Liu, Z., Zhao, D., Li, L., & Wang, D. (2023). Transcriptome Analysis of the effects of grafting interstocks on apple rootstocks and scions. International Journal of Molecular Sciences, 24(1), 1-22. https://doi.org/10.3390/ijms24010807
Lombardini, L. (2006). One-time pruning of pecan trees induced limited and short-term benefits in canopy light penetration, yield, and nut quality. HortScience, 41(6), 1469-1473. https://doi.org/10.21273/hortsci.41.6.1469
Mahmud, K. P., Ibell, P. T., Wright, C. L., Monks, D., & Bally, I. (2023). High-density espalier trained mangoes make better use of light. Agronomy, 13(10), 1-14. https://doi.org/10.3390/agronomy13102557
Manganaris, G. A., Minas, I. S., Cirilli, M., Torres, R., Bassi, D., & Costa, G. (2022). Peach for the future: A specialty crop revisited. Scientia Horticulturae, 305, 111390. https://doi.org/10.1016/j.scienta.2022.111390
Marco, R., Goldschmidt, R. J. Z., Herter, F. G., Martins, C. R., Mello-Farias, P. C., & Uberti, A. (2021). The irrigation effect on nuts’ growth and yield of Carya illinoinensis. Anais da Academia Brasileira de Ciências, 93(1), 1-8. https://doi.org/10.1590/0001-3765202120181351
Mayer, N. A., Neves, T. R., Rocha, C. T., & Silva, V. A. L. (2016). Adensamento de plantio em pessegueiros “Chimarrita.” Revista de Ciências Agroveterinárias, 15(1), 50-59. https://doi.org/10.5965/223811711512016050
Noperi-Mosqueda, L. C., Soto-Parra, J. M., Sanchez, E., Navarro-León, E., Pérez-Leal, R., Flores-Cordova, M. A., Salas-Salazar, N. A., & Yáñez-Muñoz, R. M. (2020). Yield, quality, alternate bearing and long-term yield index in pecan, as a response to mineral and organic nutrition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 342-353. https://doi.org/10.15835/nbha48111725
Núñez, M. J. H., Valdez, G. V., Martínez, D. G., & Valenzuela, C. E. (2001). Poda. In M. J. H. Núñez, G. V. Valdez, D. G. Martínez, & C. E. Valenzuela (Eds.), El nogal pecanero en Sonora (pp. 113-122). INIFAP-CIRNO-CECH.
Reig, G., Lordan, J., Hoying, S. A., Fargione, M. J., Donahue, D. J., Francescatto, P., Fazio, G., & Robinson, T. (2020). Long-term performance of “Delicious” apple trees grafted on Geneva® rootstocks and trained to four high-density systems under New York state climatic conditions. Hortscience, 55(10), 1538-1550. https://doi.org/10.21273/HORTSCI14904-20
Santos, H. G., Jacomine, P. K. T, Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo Filho, J. C., Oliveira, J. B., & Cunha T. J. F. (2018). Sistema brasileiro de classificação de solos (5. ed.). Embrapa.
Singh, J., Marboh, E. S., Singh, P., & Poojan, S. (2020). Light interception under different training system and high-density planting in fruit crops. Journal of Pharmacognosy and Phytochemistry, 9(2), 611-616.
Souza, A. L. K., Souza, E. L., Camargo, S. S., Feldberg, N. P., Pasa, M. S., & Bender, A. (2019). The effect of planting density on “BRS Rubimel” peach trained as a “Y-shaped” system. Revista Brasileira de Fruticultura, 41(2), 1-7. https://doi.org/10.1590/0100-29452019122
Taiz, L., Zeiger, E., Müller, I. M., & Murphy, A. (2017). Fundamentos de fisiologia vegetal (6. ed.). Artmed.
Toledo, P. F.S., Phillips, K., Schmidt, J. M., Bock, C. H., Wong, C., Hudson, W. G., Shapiro-Ilan, D. I., Wells, L., & Acebes‐Doria, A. L. (2024). Canopy hedge pruning in pecan production differentially affects groups of arthropod pests and associated natural enemies. Crop Protection, 176, 106521. https://doi.org/10.1016/j.cropro.2023.106521
Wells, L. (2017). Southeastern pecan grower's handbook. University of Georgia.
Wells, L. (2018). Mechanical hedge pruning affects nut size, nut quality, wind damage, and stem water potential of pecan in humid conditions. HortScience, 53(8), 1203-1207. https://doi.org/10.21273/HORTSCI13217-18
Wood, B. W. (2009). Mechanical hedge pruning of pecan in a relatively low-light environment. HortScience, 44(1), 68-72. https://doi.org/10.21273/HORTSCI.44.1.68
Worley, R. E., Mullinix, B. G., & Daniel, J. W. (1996). Selective limb pruning, tree removal, and paclobutrazol growth retardant for crowding pecan trees. Scientia Horticulturae, 67(1-2), 79-85. https://doi.org/10.1016/S0304-4238(96)00942-9
Zhang, R., Peng, F., & Li, Y. (2015). Pecan production in China. Scientia Horticulturae, 197, 719-727. https://doi.org/10.1016/j.scienta.2015.10.035
Zhu, H., & Stafne, E. T. (2019). Influence of paclobutrazol on shoot growth and flowering in a high-density pecan orchard. HortTechnology, 29(2), 210-212. https://doi.org/10.21273/horttech04241-18
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 870591/1997-5 -