Uniconazole in seed treatment modifies the early growth of maize

Palavras-chave: Zea mays; triazole; chlorophyll; root system; growth regulator.

Resumo

In Brazil, corn crops are frequently affected by extreme temperatures and wide variation in water and radiation availability. These factors, coupled with the increasing incidence of pests and diseases and different management practices, limit crop yield. Alternatives that provide increased resilience in plants are of paramount importance, such as the use of growth regulators. This study aimed to investigate the effect of uniconazole (UCZ) applied to corn seeds on the germination, and growth of the shoot and root system at the initial stage of plant development. The experiments consisted of evaluating UCZ doses (0, 50, 100, 150, and 200 mg kg−1 seed) applied to seeds on the viability and vigor of seedlings. Moreover, the effect of UCZ doses on growth and biomass accumulation, root system morphology, contents of chloroplast pigments and nutrients, and leaf reflectance in plants grown up to the V4 stage was also evaluated. UCZ treatment on seeds promoted a delay in the germination process with increasing doses, also leading to a reduction in the shoot size and biomass without an influence on the root system. Vigor assessment showed that increasing UCZ doses applied to the seeds promoted reduction in the shoot size and biomass without changing germination. Plants grown in a greenhouse had inhibition of the initial shoot growth, with the height becoming uniform over time, regardless of the UCZ dose. Root data revealed that increasing the UCZ dose promoted an increase in root length and area with a reduction in diameter. Changes in chlorophyll a and b contents were also detected, in addition to the light absorption capacity depending on the UCZ dose. Seed treatment with UCZ at doses of 100 and 150 mg kg−1 seeds increased Fe, Si, K, Co, Ca, Mg, S, and Na contents in young plants. Lately, UCZ benefited the growth and development of young corn plants.

Downloads

Não há dados estatísticos.

Referências

Ahmad, I., Ahmad, S., Kamran, M., Yang, X. N., Hou, F. J., Yang, B. P., DING, R. X. & Han, Q. F. (2021). Uniconazole and nitrogen fertilization trigger photosynthesis and chlorophyll fluorescence, and delay leaf senescence in maize at a high population density. Photosynthetica, 59(1), 192-202. https://doi.org/10.32615/ps.2021.011

Ahmad, I., Kamran, M., Ali, S., Cai, T., Bilegjargal, B., Liu, T., & Han, Q. (2018). Seed filling in maize and hormones crosstalk regulated by exogenous application of uniconazole in semiarid regions. Environmental Science and Pollution Research, 25, 33225-33239. https://doi.org/10.1007/s11356-018-3235-0

Andrea, M. C. D. S., Boote, K. J., Sentelhas, P. C., & Romanelli, T. L. (2018). Variability and limitations of maize production in Brazil: Potential yield, water-limited yield and yield gaps. Agricultural Systems, 165, 264-273. https://doi.org/10.1016/j.agsy.2018.07.004

Arsenault, J. L., Poulcur, S., Messier, C., & Guay, R. (1995). WinRHlZO™, a root-measuring system with a unique overlap correction method. HortScience, 30(4), 906-906.

Analytical Spectral Devices Inc. [ASD]. (2015). FieldSpec4. Boulder. Malvern Panalytical a Spectris Company.

Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., & Moran, M. S. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture (pp. 1-15). American Society of Agronomy; Crop Science Society of America; Soil Science Society of America.

Bittencourt, S. R. M. D., & Vieira, R. D. (2006). Temperatura e período de exposição de sementes de milho no teste de envelhecimento acelerado. Revista Brasileira de Sementes, 28(3), 161-168. https://doi.org/10.1590/S0101-31222006000300023

Brasil. Secretaria Nacional de Defesa Agropecuária, Ministério da Agricultura e Reforma Agrária. (2009). Regras para análise de sementes. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise_sementes.pdf

Brewer, K., Clulow, A., Sibanda, M., Gokool, S., Naiken, V., & Mabhaudhi, T. (2022). Predicting the chlorophyll content of maize over phenotyping as a proxy for crop health in smallholder farming systems. Remote Sensing, 14(3), 1-20. https://doi.org/10.3390/rs14030518

Campobenedetto, C., Grange, E., Mannino, G., Van Arkel, J., Beekwilder, J., Karlova, R., Garabello, C., Contartese,V., & Bertea, C. M. (2020). A biostimulant seed treatment improved heat stress tolerance during cucumber seed germination by acting on the antioxidant system and glyoxylate cycle. Frontiers in Plant Science, 11(836), 1-12. https://doi.org/10.3389/fpls.2020.00836

Cortleven, A., & Schmülling, T. (2015). Regulation of chloroplast development and function by cytokinin. Journal of Experimental Botany, 66(16), 4999-5013. https://doi.org/10.1093/jxb/erv132

Dembocurski, D., Disner, E. C., Schuelter, A. R., Souza, I. R. P., Coelho, S. R. M., & Christ, D. (2022). Use of uniconazole in growth regulation and biochemical changes in maize. Revista Brasileira de Milho e Sorgo, 21(1246), 1-21. https://doi.org/10.18512/rbms2022v21e1246

Dube, S. P., Marais, D., Mavengahama, S., Van Jaarsveld, C. M., & Gerrano, A. S. (2019). Variability in leaf mineral content of Corchorus accessions in South Africa. Research on Crops, 20(1), 121-128. http://doi.org/10.31830/2348-7542.2019.017

Estrada, F., Flexas, J., Araus, J. L., Mora-Poblete, F., Gonzalez-Talice, J., Castillo, D., Matus, I. A., Mendez-Espinoza, A. M., Garriga, M., Araya-Riquelme, C., Douthe, C., Castillo, B., del Pozo, A., & Lobos, G. A. (2023). Exploring plant responses to abiotic stress by contrasting spectral signature changes. Frontiers in Plant Science, 13, 1-17. https://doi.org/10.3389/fpls.2022.1026323

Fancelli, A. L. (2015). Manejo baseado na fenologia aumenta eficiência de insumos e produtividade. Visão Agrícola, 13(1), 24-29.

Jiang, Y., Rong, H., Wang, Q., Lu, Y., Li, N., Li, W., Li, M., Xie, T., Wang, S., Zhao, H., Cao, Y., & Qian, Y. (2023). Exogenous uniconazole application positively regulates carbon metabolism under drought stress in wheat seedlings. Agronomy, 14(1), 1-21. https://doi.org/10.3390/agronomy14010022

Kang, J., Yim, S., Choi, H., Kim, A., Lee, K. P., Lopez-Molina, L., Martinoia, E., & Lee, Y. (2015). Abscisic acid transporters cooperate to control seed germination. Nature Communications, 6(8113), 1-10. https://doi.org/10.1038/ncomms9113

Lichtenthaler, H. K. (1987). [34]Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1

Liu, Y., Fang, Y., Huang, M., Jin, Y., Sun, J., Tao, X., Zhang, G., He, K., Zhao, Y., & Zhao, H. (2015). Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk. Biotechnology for Biofuels, 8(57), 1-12. https://doi.org/10.1186/s13068-015-0246-7

Martins, G. D., & Galo, M. L. B. T. (2015). Caracterização espectral da cana-de-açúcar infectada por nematoides e migdolus fryanus por espectrorradiometria de campo. BCG. Boletim de Ciências Geodésicas, 21(4), 783-796. https://doi.org/10.1590/S1982-21702015000400046

Nóia Júnior, R. S., & Sentelhas, P. C. (2019). Soybean-maize off-season double crop system in Brazil as affected by El Niño Southern Oscillation phases. Agricultural Systems, 173, 254-267. https://doi.org/10.1016/j.agsy.2019.03.012

Pavlovic, D., Nikolic, B., Djurovic, S., Waisi, H., Andjelkovic, A., & Marisavljevic, D. (2015). Chlorophyll as a measure of plant health: Agroecological aspects. Pesticidi i Fitomedicina, 29(1), 21-34. https://doi.org/10.2298/PIF1401021P

Rademacher, W. (2000). Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Biology, 51(1), 501-531. https://doi.org/10.1146/annurev.arplant.51.1.501

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Rouse Jr, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA CR. https://ntrs.nasa.gov/citations/19750020419

Saito, S., Okamoto, M., Shinoda, S., Kushiro, T., Koshiba, T., Kamiya, Y., Hirai, N., Todoroki, Y., Sakata, K., Nambara, E., & Mizutani, M. (2006). A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis. Bioscience, Biotechnology and Biochemistry, 70(7), 1731-1739. https://doi.org/10.1271/bbb.60077

Savvides, A., Ali, S., Tester, M., & Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in Plant Science, 21(4), 329-340. https://doi.org/10.1016/j.tplants.2015.11.003

Sidhu, G. P. S., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017). Alterations in photosynthetic pigments, protein, and carbohydrate metabolism in a wild plant Coronopus didymus L. (Brassicaceae) under lead stress. Acta Physiologiae Plantarum, 39(176), 1-9. https://doi.org/10.1007/s11738-017-2476-8

Singh, A., & Roychoudhury, A. (2022). Mechanism of crosstalk between cytokinin and gibberellin. In Auxins, cytokinins and gibberellins signaling in plants (pp. 77-90). Springer International Publishing. https://doi.org/10.1007/978-3-031-05427-3_4

Song, S., Feng, N. J., & Zheng, D. F. (2008). Effect of seed soaking with uniconazole on germination and anti-oxidant enzyme of soybean. Soybean Science, 27, 250-259.

The Jamovi Project. (2022). Jamovi - version 2.3 [Computer Software]. https://www.jamovi.org.

United States Department of Agriculture [USDA]. (2021). Foreign Agricultural Service. World agricultural production. https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0440000>

Wang, P., Lombi, E., Zhao, F. J., & Kopittke, P. M. (2016). Nanotechnology: a new opportunity in plant sciences. Trends in Plant Science, 21(8), 699-712. https://doi.org/10.1016/j.tplants.2016.04.005

Wang, Z., Chen, J., Fan, Y., Cheng, Y., Wu, X., Zhang, J., Wang, B., Wang, X. C., Yong, T., Liu, W., Liu, J., Du, J., Yang, W., & Yang, F. (2020). Evaluating photosynthetic pigment contents of maize using UVE-PLS based on continuous wavelet transform. Computers and Electronics in Agriculture, 169, 105160. https://doi.org/10.1016/j.compag.2019.105160

Yendrek, C. R., Tomaz, T., Montes, C. M., Cao, Y., Morse, A. M., Brown, P. J., McIntyre, L. M., Leakey, A. D. B., & Ainsworth, E. A. (2017). High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiology, 173(1), 614-626. https://doi.org/10.1104/pp.16.01447

Zhang, M., Duan, L., Tian, X., He, Z., Li, J., Wang, B., & Li, Z. (2007). Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. Journal of Plant Physiology, 164(6), 709-717. https://doi.org/10.1016/j.jplph.2006.04.008

Zhou, H., Zheng, D., Feng, N., & Shen, X. (2022). Effects of uniconazole on leaves photosynthesis, root distribution and yield of mung bean (Vigna radiata). Journal of Plant Growth Regulation, 41(7), 2629-2637. https://doi.org/10.1007/s00344-021-10455-7

Zhou, H., Liang, X., Feng, N., Zheng, D., & Qi, D. (2021). Effect of uniconazole to soybean seed priming treatment under drought stress at VC stage. Ecotoxicology and Environmental Safety, 224, 1-13. https://doi.org/10.1016/j.ecoenv.2021.112619

Publicado
2025-06-13
Como Citar
Dembocurski, D., Schuelter, A. R., Coelho, S. R. M., Vilas Boas, M. A., Souza, I. R. P., Magalhães, P. C., Mercante, E., & Christ, D. (2025). Uniconazole in seed treatment modifies the early growth of maize. Acta Scientiarum. Agronomy, 47(1), e71944. https://doi.org/10.4025/actasciagron.v47i1.71944
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus