Impact of gibberellic acid on seedling growth and enzymatic activity in bean cultivars with contrasting seed vigor
Resumo
Soaking seeds in gibberellin acid (GA) can reveal mechanisms controlling seed vigor. GA acts early in germination, stimulating the synthesis of hydrolytic enzymes that break down starch to provide the energy needed for radicle protrusion. This study investigated the effects of gibberellic acid (GA3) on physiology, biochemistry, and molecular components in bean cultivars with different vigor levels. Two cultivars (BAF44, low vigor; and BAF55, high vigor) were soaked in water or 0.035 mM L-1 GA3. The imbibition curve displayed a triphasic pattern; however, exogenous GA3 accelerated root emergence only in cultivar BAF44. GA3 increased root growth only in cultivar BAF44, but increased hypocotyl and epicotyl lengths in both cultivars. GA3 treatment improved seedling length in the low-vigor cultivar, resulting in more vigorous seedlings. This is likely due to increased gene expression and activity of alpha-amylase, leading to greater starch and total soluble sugar reduction in cotyledons, providing more energy for growth points. The initial seed vigor of beans is crucial for how GA3 affects reserve mobilization dynamics.
Downloads
Referências
Andrade, G. C., Coelho, C. M. M., & Padilha, M. S. (2019). Seed reserves reduction rate and reserves mobilization to the seedling explain the vigour of maize seeds. Journal of Seed Science, 41(4), 488-497. https://doi.org/10.1590/2317-1545v41n4227354
Azimi, S. M., Eisvand, H. R., Ismaili, A., & Akbari, N. (2022). Effect of gibberellin, nano-nutrition with titanium, zinc and iron on yield and some physiological and qualitative traits of white beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 1-15. https://doi.org/10.15835/nbha50112538
Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: physiology of development, germination and dormancy (3rd ed.). Springer.
Bradford, M. M. (1976). A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999
Brasil. (2009). Regras para análise de sementes. MAPA/ACS.
Carrera-Castaño, G., Calleja-Cabrera, J., Pernas, M., Gómez, L., & Oñate-Sánchez, L. (2020). An updated overview on the regulation of seed germination. Plants, 9(6), 1-41. https://doi.org/10.3390/plants9060703
Chauhan, A., AbuAmarah, B. A., Kumar, A., Verma, J. S., Ghramh, H. A., Khan, K. A., & Ansari, M. J. (2019). Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi Journal of Biological Sciences, 26(6), 1298-1304. https://doi.org/10.1016/j.sjbs.2019.04.0140
Cosgrove, D. J. (2015). Plant expansins: Diversity and interactions with plant cell walls. Current Opinion in Plant Biology, 25, 162-172. https://doi.org/10.1016/j.pbi.2015.05.014
Damaris, R. N., Lin, Z., Yang, P., & He, D. (2019). The rice alpha-amylase, conserved regulator of seed maturation and germination. International Journal of Molecular Sciences, 20(2), 1-17. https://doi.org/10.3390/ijms20020450
Dhillon, B. S., Kumar, V., Sagwal, P., Kaur, N., Singh, M. G., & Singh, S. (2021). Seed priming with potassium nitrate and gibberellic acid enhances the performance of dry direct seeded rice (Oryza sativa L.) in North-Western India. Agronomy, 11(5), 1-20. https://doi.org/10.3390/agronomy11050849
Diaz-Mendoza, M., Diaz, I., & Martinez, M. (2019). Insights on the proteases involved in barley and wheat grain germination. International Journal of Molecular Sciences, 20(9), 1-11. https://doi.org/10.3390/ijms20092087
Ehrhardt-Brocardo, N. C. M., & Coelho, C. M. M. (2016). Hydration patterns and physiologic quality of common bean seeds. Semina: Ciências Agrarias, 37(4), 1791-1800. https://doi.org/10.5433/1679-0359.2016v37n4p1791
El-Sanatawy, A. M., El-Kholy, A. S. M., Ali, M. M. A., Awad, M. F., & Mansour, E. (2021). Maize seedling establishment, grain yield and crop water productivity response to seed priming and irrigation management in a mediterranean arid environment. Agronomy, 11(4), 1-16. https://doi.org/10.3390/agronomy11040756
Fu, X., & Harberd, N. P. (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 421, 740-743. https://doi.org/10.1038/nature01387
Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.-L., Powers, S. J., Gong, F., Phillips, A. L., Hedden, P., Sun, T.-P., & Thomas, S. G. (2006). Genetic characterization and functional analysis of the gid1 gibberellin receptors in Arabidopsis. The Plant Cell, 18(12), 3399-3414. https://doi.org/10.1105/tpc.106.047415
Ibrahim, M. E. H., Zhu, X., Zhou, G., Ali, A. Y. A., Elsiddig, A. M. I., & Farah, G. A. (2019). Response of some wheat varieties to gibberellic acid under saline conditions. Agrosystems, Geosciences and Environment, 2(1), 1-7. https://doi.org/10.2134/age2019.01.0003
Li, C. Y., Zhang, R. Q., Fu, K. Y., Li, C., & Li, C. (2017). Effects of high temperature on starch morphology and the expression of genes related to starch biosynthesis and degradation. Journal of Cereal Science, 73, 25-32. https://doi.org/10.1016/j.jcs.2016.11.005
Li, G., Zhu, C., Gan, L., Ng, D., & Xia, K. (2015). GA(3) enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis. Plant Cell Reports, 34, 483-94. https://doi.org/10.1007/s00299-014-1728-y
Marcos-Filho, J. (2015). Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, 72(4), 363-374. https://doi.org/10.1590/0103-9016-2015-0007
Marcos-Filho, J. (2020). Teste de envelhecimento acelerado. In F. C. Krzyzanowski, R. V. Vieira, J. B. França-Neto, & J. Marcos-Filho (Eds), Vigor de sementes: conceitos e testes (pp. 185-246). ABRATES.
Marinho, J. L., Sartori, A. V. S., Rodrigues, E. J., Bazzo, J. H. B., Ferreira, A. S., & Zucareli, C. (2021). Pre-soaking with gibberellin in sweet corn seed lots with different levels of vigor. Semina: Ciências Agrárias, 42(2), 539-551. https://doi.org/10.5433/1679-0359.2021v42n2p539
Mazid, M. (2014). Seed priming application of gibberellic acid on growth, biochemical, yield attributes and protein status of chickpea (Cicer arietinum L. cv. DCP 92-3). International Journal of Genetic Engineering and Biotechnology, 5(1), 17-22.
McCready, R. M., Guggolz, J., Silviera, V., & Owens, H. S. (1950). Determination of starch and amylose in vegetables application to peas. Analytical Chemistry, 22(9), 1156-1158. https://doi.org/10.1021/ac60045a016
Miller, G. L. (1959). Use of dinitrosaiicyiic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030
Oliveira, G. E., Pinho, E. V., Andrade, T., Souza, J. C., Caixeta, F., & Ferreira, R. A. (2015). Relationship among physiological quality, heterosis, and amylase gene expression in maize seeds. Genetics and Molecular Research, 14(3), 8623-8633. https://doi.org/10.4238/2015.July.31.10
Padilha, M. S., Coelho, C. M. M., & Ehrhardt-Brocardo, N. C. M. (2021). Vigor and alpha-amylase activity in common bean seeds under salt stress conditions. Semina: Ciências Agrarias, 42(6), 3633-3650. https://doi.org/10.5433/1679-0359.2021v42n6supl2p3633
Padilha, M. S., Coelho, C. M. M., & Andrade, G. C. (2020). Seed reserve mobilization evaluation for selection of high-vigor common bean cultivars. Revista Caatinga, 33, 927-935. https://doi.org/10.1590/1983-1252020v33n407rc
Pereira, W. A., Pereira, S. M. A., & Dias, D. C. F. S. (2015). Dynamics of reserves of soybean seeds during the development of seedlings of different commercial cultivars. Journal of Seed Science, 37(1), 63-69. https://doi.org/10.1590/2317-1545v37n1142202
Rafique, M., Naveed, M., Mustafa, A., Akhtar, S., Munawar, M., Kaukab, S., Ali, H. M., Siddiqui, M. H., & Salem, M. Z. M. (2021). The Combined effects of gibberellic acid and rhizobium on growth, yield and nutritional status in chickpea (Cicer arietinum L.). Agronomy, 11(1), 1-16. https://doi.org/10.3390/agronomy11010105
Ragni, L., Nieminen, K., Pacheco-Villalobos, D., Sibout, R., Schwechheimer, C., & Hardtke, C. S. (2011). Mobile gibberellin directly stimulates arabidopsis hypocotyl xylem expansion. The Plant Cell, 23(4), 1322-1336. https://doi.org/10.1105/tpc.111.084020
Rohr, L. A., França-Silva, F., Corrêa, C. G., Carvalho, H. W. P., & Gomes-Junior, F. G. (2023). Soybean seeds treated with zinc evaluated by X-ray micro-fluorescence spectroscopy. Scientia Agricola, 80, 1-11. https://doi.org/10.1590/1678-992X-2021-0131
Saadat, T., Sedki, M., Gholipuri, A. Q., Sharifi, R. S., & Baglo, R. S. (2020). The effect of priming deterioration on the activity of antioxidant enzymes and the mobility of seed reserves in French bean (Phaseolus vulgaris L.) cv. Sadri. Iranian Journal of Seed Science and Technology, 8(2), 19-32. https://doi.org/10.22034/IJSST.2018.116851.1154
Scappa-Neto, A., Bittencourt, S. E. M., Vieira, R. D., & Volpe, C. A. (2001). Effect of dry bean initial seed moisture content and the chamber on the accelerated aging test. Scientia Agricola, 58(4), 747-751. https://doi.org/10.1590/S0103-90162001000400016
Skadsen, R. W. (1998). Physiological and molecular genetic mechanisms regulating hydrolytic enzyme gene expression in cereal grains. Physiologia Plantarum, 104(3), 486-502. https://doi.org/10.1034/j.1399-3054.1998.1040326.x
Soltani, A., Gholipoor, M., & Zeinali, E. (2006). Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany, 55(1-2), 195-200. https://doi.org/10.10 16/j.envexpbot.2004.10.012
Souza, C. A., Coelho, C. M. M., Guidolin, A. F., Engelsing, M. J., & Bordin, L. C. (2010). Influence of gibberellic acid on the architecture of common bean plants at early growth development. Acta Scientiarum. Agronomy, 32(2), 325-332. https://doi.org/10.4025/actasciagron.v32i2.3721
Sunmonu, T. O., Kulkarni, M. G., & Van Staden, J. (2016). Smoke-water, karrikinolide and gibberellic acid stimulate growth in bean and maize seedlings by efficient starch mobilization and suppression of oxidative stress. South African Journal of Botany, 102, 4-11. https://doi.org/10.1016/j.sajb.2015.06.015
Tan, H., Man, C., Xie, Y., Yan, J., Chu, J., & Huang, J. (2019). A Crucial role of ga-regulated flavonol biosynthesis in root growth of Arabidopsis. Molecular Plant, 12(4), 521-537. https://doi.org/10.1016/j.molp.2018.12.021
Tong, J., Xue-Jun, L., Shi-Yong, Z., Shao-Qing, L., Xiao-Jue, P., Jing, Y., & Ying-Guo, Z. (2007). Identification, genetic characterization, GA response and molecular mapping of Sdt97: A dominant mutant gene conferring semi-dwarfism in rice (Oryza Sativa L.). Genetical Research, 89(4), 221-230. https://doi.org/10.1017/S0016672307009020
Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., Kamfwa, K., Snapp, S. S., & Bales, S. (2022). Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security-A review. Legume Science, 5(1), 1-13. https://doi.org/10.1002/leg3.155
Wang, X., Zheng, H., Tang, Q., Mo, W., & Ma, J. (2019). Effects of gibberellic acid application after anthesis on seed vigor of Indica hybrid rice (Oryza sativa L.). Agronomy, 9(12), 1-10. https://doi.org/10.3390/agronomy9120861
Wang, Y., Cui, Y., Hu, G., Wang, X., Chen, H., Shi, Q., Xiang, J., Zhang, Y., Zhu, D., & Zhang, Y. (2018). Reduced bioactive gibberellin content in rice seeds under low temperature leads to decreased sugar consumption and low seed germination rates. Plant Physiology and Biochemistry, 133, 1-10. https://doi.org/10.1016/j.plaphy.2018.10.020
Wang, G. L., Que, F., & Xu, Z. S. (2015). Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC Plant Biology, 15(290), 1-12. https://doi.org/10.1186/s12870-015-0679-y
Xiong, M., Chu, L., Li, Q., Yu, J., Yang, Y., Zhou, P., Zhou, Y., Zhang, C., Fan, X., Zhao, D., Yan, C., & Liu, Q. (2021). Brassinosteroid and gibberellin coordinate rice seed germination and embryo growth by regulating glutelin mobilization. The Crop Journal, 9, 1039-1048. https://doi.org/10.1016/j.cj.2020.11.006
Yu, S. M., Lo, S. F., & Ho, T. H. D. (2015). Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Plant Science, 20(12), 844-857. https://doi.org/10.1016/j.tplants.2015.10.009
Copyright (c) 2025 Yasmin Pincegher Siega, Cileide Maria Medeiros Coelho, Mariana Bertoncini Peixoto da Silva, Matheus Rodrigues Magalhães Albuquerque, Matheus Santin Padilha, Giselle Camargo Mendes (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.