Vigor and damage of soybean seeds estimated by sequential Bayesian techniques in the tetrazolium test

Keywords: Glycine max (L.) Merrill; multinomial distribution; dirichlet; prior elicitation.

Abstract

Soybean is an oilseed of great relevance to Brazil because it is one of the main crops produced in the country. The success of this crop depends on several factors, the main one being seed quality. The tetrazolium test has been used for quality control because in addition to evaluating the viability of germination and the vigor of the seed lots, it facilitates classification of the types of damage. Thus, the use of sequential sampling, which takes into account the immediate evaluation of each seed, may facilitate an earlier decision on viability and vigor without the need to evaluate all seeds as in the classic test as a formality of the method. In addition, the estimates obtained through Bayesian techniques can be improved by including prior information. The objective of this study was to study the application of Bayesian sequential tests to estimate the proportion of vigor in lots (binomial modeling) and the proportion of damage per category in soybean seeds (multinomial modeling) through the tetrazolium test. In each case, conjugate priors were used, and the parameters were elicited. It can be concluded that the four approaches, frequentist, Bayesian, sequential, and Bayesian sequential, were efficient for estimation of and decision-making about the parameters, with a reduction in the sample size. Moisture damage was present in 20.17% of the soybean seeds evaluated, damage by stink bugs in 3.50%, and mechanical damage, in the case of manual harvesting, in only 1.92%. In addition, 1.00% of seeds presented more than two types of damage.

Downloads

Download data is not yet available.

References

Abati, J., Zucareli, C., Brzezinski, C. R., Krzyzanowski, F. C., França-Neto, J. B., & Henning, F. A. (2021). Metabolites of the phenylpropanoid pathway and physiological quality of soybean seeds in storage. Journal of Seed Science, 43, 1-14. https://doi.org/10.1590/2317-1545v43253585

Avci, E. (2021). Using systematic review and meta-analysis in order to obtain different empirical-informative prior for bayesian binomial proportion. Sigma Journal of Engineering and Natural Sciences, 39(2), 195-202. https://doi.org/10.14744/sigma.2021.00009

Batista, E. C., Villela, G. M., Pires, R. M. O., Santos, H. O., Carvalho, E. R., & Bruzi, A. T. (2022). Physiological quality of soybean seeds and the influence of maturity group. Journal of Seed Science, 44, 1-11. https://doi.org/10.1590/2317-1545v44261325

Boukabour, S., & Masmoudi, A. (2021). On the consistency of Bayes estimates for the infinite continuous mixture of Dirichlet distributions. Hacettepe Journal of Mathematics and Statistics, 50(5), 1534-1547. https://doi.org/10.15672/hujms.774732

Brasil. (2009). Regras para análise de sementes. SNDA/MAPA.

Brighenti, C. R. G., Resende, M., & Brighenti, D. M. (2011). Estimação sequencial Bayesiana aplicada à proporção de infestação de psilídeos em alecrim do campo. Revista Brasileira de Biometria, 29(2), 342-354.

Brighenti, C. R. G., Cirillo, M. Â., Costa, A. L. A., Rosa, S. D. V. F., & Guimarães, R. M. (2019). Bayesian sequential procedure to estimate the viability of seeds Coffea arabica L. in tetrazolium test. Scientia Agricola, 76(3), 198-207. https://doi.org/10.1590/1678-992X-2017-0123

Costa, N. P., Mesquita, C. M., Maurina, A. C., França Neto, J. B., Krzyzanowski, F. C., Oliveira, M. C. N., & Henning, A. A. (2005). Perfil dos aspectos físicos, fisiológicos e químicos de sementes de soja produzidas em seis regiões do Brasil. Revista Brasileira de Sementes, 27(2), 172-181. https://doi.org/10.1590/S0101-31222005000200025

França-Neto, J. B., & Krzyzanowski, F. C. (2022). Use of the tetrazolium test for estimating the physiological quality of seeds. Seed Science and Technology, 50(2), 31-44. https://doi.org/10.15258/sst.2022.50.1.s.03

Hamura, Y. (2023). Bayesian point estimation and predictive density estimation for the binomial distribution with a restricted probability parameter. Communications in Statistics-Theory and Methods, 52(11), 3767-3794. https://doi.org/10.1080/03610926.2021.1980046

Hwang, L.-C. (2020). Second-order approximations of a robust sequential procedure in Bayes sequential estimation. Sequential Analysis, 39(4), 467-483. https://doi.org/10.1080/07474946.2020.1826785

Jesus, M. A., Reis, V. M. A., Sampaio, F. R., Posse, F. L., & Barbosa, R. M. (2021). Quality control charts in the processing of soybean seeds. Journal of Seed Science, 43, 1-11. https://doi.org/10.1590/2317-1545v43245104

Inacio, M., Izbicki, R., Lopes, D., Diniz, M. A., Salasar, L. E., & Ferreira, J. C. P. (2022). What if the forecaster knew? Assessing forecast reliability via simulation. Trends in Computational and Applied Mathematics, 23(1), 175-192. https://doi.org/10.5540/tcam.2022.023.01.00175

Jones, P. W. (1976). Bayes sequential estimation of multinomial parameters. Mathematische Operationsforschung und Statistik, 7, 123-127. https://doi.org/10.1080/02331887608801283

Lima, I. S., Brighenti, C. R. G., & Pires, R. M. O. (2024a). Bayesian sequential estimation of the proportion of damage in maize seeds. Scientia Agricola, 81, 1-11. https://doi.org/10.1590/1678-992X-2023-0094

Lima, I. S., Brighenti, C. R. G., & Yazbeck, G. M. (2024b). Sequential Bayesian approach for genetic diversity analysis of the piracanjuba fish (Brycon orbignyanus). Brazilian Journal of Biometrics, 42(2), 171-181. https://doi.org/10.28951/bjb.v42i2.695

Lopes, M. M., Prado, M. O. D., Sader, R., & Barbosa, R. M. (2011). Efeitos dos danos mecânicos e fisiológicos na colheita e beneficiamento de sementes de soja. Bioscience Journal, 27(2), 230-238.

Lopes, K. B. A., Pípolo, A. E., Bazzo, J. H. B., & Zucareli, C. (2020). Intracultivar selection for seed quality of soybeans in an ultra-low-density selection model (Honeycomb Selection Designs). Acta Scientiarum. Agronomy, 42(1), 1-10. https://doi.org/10.4025/actasciagron.v42i1.44299

Lorini, I. (2018). Qualidade de sementes e grãos comerciais de soja no Brasil - safra 2016/17. Embrapa Soja.

Marcos-Filho, J. (2015). Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, 72(4), 363-374. https://doi.org/10.1590/0103-9016-2015-0007

Martins, C. C., Unêda-Trevisoli, S. H., Môro, G. V., & Vieira, R. D. (2016). Metodologia para seleção de linhagens de soja visando germinação, vigor e emergência em campo. Revista Ciência Agronômica, 47(3), 455-461. https://doi.org/10.5935/1806-6690.20160055

Mulgan, N. (2021). Binomial early stopping times. Sequential Analysis, 40(4), 501-517. https://doi.org/10.1080/07474946.2021.2010409

Najar, F., & Bouguila N. (2022). Exact fisher information of generalized Dirichlet multinomial distribution for count data modeling. Information Sciences, 586, 688-703. https://doi.org/10.1016/j. ins.2021.11.083

R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Ribeiro, G. F. R., Carmo-Filho, A. S., Alves, R. M., França-Neto, J. B., Marcos-Filho, J., & Gomes-Junior, F. G. (2024). The Vigor-S system as an auxiliary component of the accelerated aging test procedure in soybean seeds. Journal of Seed Science, 46, 1-10. https://doi.org/10.1590/2317-1545v46280795

Santos, R. F., Placido, H. F., Bosche, L. L., Zeni Neto, H., Henning, F. A., & Braccini, A. L. (2021). Accelerated aging methodologies for evaluating physiological potential of treated soybean seeds. Journal of Seed Science, 43, 1-10. https://doi.org/10.1590/2317-1545v43250605

Schnuerch, M., & Erdfelder, E. (2020). Controlling decision errors with minimal costs: The sequential probability ratio t test. Psychological Methods, 25(2), 206-226. https://doi.org/10.1037/met0000234

Schuab, S. R. P., Braccini, A. L., Scapim, C. A., França-Neto, J. B., Meschede, D. K., & Ávila, M. R. (2007). Germination test under water stress to evaluate soybean seed vigour. Seed Science and Technology, 35(1), 187-199. https://doi.org/10.15258/sst.2007.35.1.17

Souza, M., Horikoshi, W. C., Saito, P. T., & Bugatti, P. H. (2024). Soybean seed vigor classification through an effective image learning-based approach. Multimedia Tools and Applications, 83, 13113-13136. https://doi.org/10.1007/s11042-023-15804-0

Stefan, A. M., Evans, N. J., & Wagenmakers, E. J. (2022). Practical challenges and methodological flexibility in prior elicitation. Psychological Methods, 27(2), 177-197. https://doi.org/10.1037/met0000354

Toloi, M. N. V., Bonilla, S. H., Toloi, R. C., Silva, H. R. O., & Nääs, I. A. (2021). Development indicators and soybean production in Brazil. Agriculture, 11(11), 1-15. https://doi.org/10.3390/agriculture11111164

Tan, M. H. (2020). Bayesian optimization of expected quadratic loss for multiresponse computer experiments with internal noise. SIAM/ASA Journal on Uncertainty Quantification, 8(3), 891-925. https://doi.org/10.1137/19M1272676

Yi, D. H., Kim, D. W., & Park, C. S. (2020). Prior selection method using likelihood confidence region and Dirichlet process Gaussian mixture model for Bayesian inference of building energy models. Energy and Buildings, 224, 1-17. https://doi.org/10.1016/j.enbuild.2020.110293

Published
2025-09-01
How to Cite
Silva, M. L. C. L. da, Lima, I. da S., Braga, B. C., & Brighenti, C. R. G. (2025). Vigor and damage of soybean seeds estimated by sequential Bayesian techniques in the tetrazolium test. Acta Scientiarum. Agronomy, 47(1), e72116. https://doi.org/10.4025/actasciagron.v47i1.72116
Section
Crop Production

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus