Physiological behavior of Cryptocarya aschersoniana seeds subjected to drying
Abstract
Seeds of Cryptocarya aschersoniana, as well as other species of the Lauraceae family, have frequently been reported to be sensitive to desiccation, which hinders their ex situ conservation. This study investigated the changes that occur during the drying of these seeds. Seeds harvested over 3 years were processed and dried at 20°C in boxes containing silica gel (with relative humidity ranging from 13.5 to 40%) to achieve a target water content of 40, 35, 30, 25, and 20%. For freshly harvested seeds, at each target water content, samples were taken, and germination tests were performed. Cell analyses were performed by using scanning electron and light microscopy (with reactions for starch and lipids). In addition, the sugars and lipid contents were determined. The results indicated that C. aschersoniana seeds are sensitive to desiccation and that under the conditions tested, the critical water content is approximately 30%, and the lethal water content is less than 18%. The seeds are dispersed while dormant, and this dormancy is partially overcome by partial drying. These seeds have some protection systems against desiccation, such as increased sucrose concentrations, during artificial drying; however, these systems are not efficient at protecting the seeds from damage caused by more intense desiccation. The images obtained allowed the verification of changes only at the point where the seeds were already completely unviable.
Downloads
References
Barbedo, C. J. (2018). A new approach towards the so-called recalcitrant seeds. Journal of Seed Science, 40(3), 221-236. https://doi.org/10.1590/2317-1545v40n3207201
Brasil. (2009). Regras para Análise de Sementes. MAPA/ACS.
Bernal-Lugo, I., & Leopold, A. C. (1992). Changes in soluble carbohydrates during seed storage. Plant Physiology, 98(3), 1207-1210. https://doi.org/10.1104/pp.98.3.1207
Carvalho, P. H. R. (2006). Canela-fogo Cryptocarya aschersoniana. In P. H. R. Carvalho (Ed.), Espécies arbóreas Brasileiras (pp. 141-147). Embrapa Florestas.
Chandra, J., & Keshavkant, S. (2018). Desiccation-induced ROS accumulation and lipid catabolism in recalcitrant Madhuca latifolia seeds. Physiology and Molecular Biology of Plants, 24, 75-87. https://doi.org/10.1007/s12298-017-0487-y
Comin, A., Pereira, L. D., Maciel, C. G., Chies, J., & Muniz, M. F. B. (2014). Secagem e armazenamento de sementes de Eugenia uniflora L. Revista Brasileira de Ciências Agrárias, 9(1), 84-90. https://doi.org/10.5039/agraria.v9i1a2786
Fontana, C., Gasper, A. L., & Savegnani, L. (2016). A raridade das espécies arbóreas de Lauraceae no planalto do estado de Santa Catarina, Brasil. Hoehnea, 43(3), 361-369. https://doi.org/10.1590/2236-8906-95/2015
Hell, A. F., Kretzschmar, F. S., Simões, K., Heyer, A. G., Barbedo, C. J., Braga, M. R., & Centeno, D. C. (2019). Metabolic changes on the acquisition of desiccation tolerance in seeds of the Brazilian native tree Erythrina speciosa. Frontiers in Plant Science, 10(1356), 1-15. https://doi.org/10.3389/fpls.201z9.01356
Jaganathan, G. K. (2021) Ecological insights into the coexistence of dormancy and desiccation-sensitivity in Arecaceae species. Annals of Forest Science, 78(10), 1-14. https://doi.org/10.1007/s13595-021-01032-9
Jaganathan, G. K., Li, J., Yang, Y., Han, Y., & Liu B. (2019). Complexities in identifying seed storage behavior of hard seed-coated species: A special focus on Lauraceae. Botany Letters, 166(1), 1-10. http://dx.doi.org/10.1080/23818107.2018.1563566
Marcos Filho, J. (2016). Seed physiology of cultivated plants (2nd ed.). ABRATES.
Marques, A., Nijveen, H., Somi, C., Ligterink, W., & Hilhorst, H. (2019). Induction of desiccation tolerance in desiccation sensitive Citrus limon seeds. Journal of Integrative Plant Biology, 61(5), 624-638. https://doi.org/10.1111/jipb.12788
Muxfeldt, R. E., Faria, J. M. R., Tonetti, O. A. O., & Silva, E. A. A. (2012). Utilização do teste de raios-X na avaliação dos efeitos da dessecação e infestação em diásporos de canela batalha Cryptocarya aschersoniana Mez (Lauraceae). Cerne, 18(4), 654-666. https://doi.org/10.1590/S0104-77602012000400016
Obroucheva, N., Sinkewich, I., & Lityagina, S. (2016). Physiological aspects of seed recalcitrance: a case study on the tree Aesculus hippocastanum. Tree Physiology, 36(9), 1127-1150. https://doi.org/10.1093/treephys/tpw037
Pritchard, H. W, Sershen, Tsan, F. Y., Wen, B., Jaganathan, G. K., Calvi, G., Pence, V. C., Mattana, E., Ferraz, I. D. K., & Seal, C. E. (2022). Regeneration in recalcitrant-seeded species and risks from climate change In C. C. Baskin, & J. M. Baskin (Eds.), Plant regeneration from seeds. A global warming perspective (pp. 259-273). Academic Press. https://doi.org/10.1016/B978-0-12-823731-1.00014-7
Saha, D., Choyal, P., Mishra, U. N., Dey, P., Bose, B., Prathibha, M. D., Gupta, N. K., Mehta, B. K., Kumar, P., Pandey, S., Chauhan, J., & Singhal, R. K. (2022). Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress, 4, 1-14. https://doi.org/10.1016/j.stress.2022.100066
Silva, A., & Ferraz, I. D. K. (2015). Armazenamento de sementes. In F. C. M. Pinã-Rodrigues, M. B. Figliolia, & A. Silva (Eds.), Sementes florestais tropicais: da ecologia à produção (pp. 219-242). ABRATES.
Silva, D. J. (1990). Análise de alimentos – métodos químicos e biológicos. UFV.
Thapliyal, R. C., Phartyal, S. S., & Nayal, J. S. (2004). Germination, desiccation tolerance and storage of seed of a tropical evergreen tree - Cryptocarya floribunda Nees (Lauraceae). Seed Science and Technology, 32(2), 537-545. http://dx.doi.org/10.15258/sst.2004.32.2.23
Tonetti, O. A. O., Pereira, W. V. S., José, A. C., & Faria, J. M. R. (2021). Physiological and cellular changes of ctored Cryptocarya aschersoniana Mez. seeds. Floresta e Ambiente, 28(3), 1-7. https://doi.org/10.1590/2179-8087-FLORAM-2020-0067
Tonetti, O. A. O., Faria, J. M. R., José, A. C., Oliveira, T. G. S., & Martins, J. C. (2016). Seed survival of the tropical tree Cryptocarya aschersoniana (Lauraceae): Consequences of habitat disturbance. Austral Ecology, 41(3), 248-254. https://doi.org/10.1111/aec.12305
Tsou, P.-L., Zhu, H., Godfrey, T., & Blackman, S. (2022). Post-excision drying of immature Phalaenopsis seeds improves germination and desiccation tolerance. South Africa Journal of Botany, 150, 1184-1191. https://doi.org/10.1016/j.sajb.2022.08.044
Vaz, T. A. A., Davide, A. C., Rodrigues-Junior, A. G., Nakamura, A. T., Tonetti, O. A. O., & Silva, E. A. A. (2016). Swartzia landsdorffii Radi: morphophysiological traits of a recalcitrant seed dispersed during the dry season. Seed Science and Technology, 26(1), 47-56. https://doi.org/10.1017/S0960258515000380
Ventrella, M. C., Almeida, A. L. Nery, L. A., & Coelho, V. P. M. (2013). Métodos histoquímicos aplicados às sementes. UFV. https://doi.org/10.13140/RG.2.1.4815.1521
Viana, W. G., Lando, A. P., Silva, R. A., Costa, C. D., Vieira, P. H. M., & Steiner, N. (2020). Physiological performance of Garcinia gardneriana (Planch. & Triana) Zappi: a species with recalcitrant and dormant seeds. Journal of Seed Science, 42, 1-12. http://dx.doi.org/10.1590/2317-1545v42222357
Vicente, D., Oliveira, L. M., Tonetti, O. A. O., Silva, A. A., Liesch, P. P., & Engel, M. L. (2016). Viabilidade de sementes de Ocotea puberula (Rich.) Ness ao longo do armazenamento. Floresta e Ambiente, 23(3), 418-426. http://doi.org/10.1590/2179-8087.107414
Wyse, S. V. & Dickie, J. B. (2017). Taxonomic affinity, habitat and seed mass strongly predict seed desiccation response: a boosted regression trees analysis based on 17 539 species. Annals of Botany, 121(1), 71-83. https://doi.org/10.1093/aob/mcx128
Zhang, M.-J., Wang, Y.-Z., Xian, Y., Cui, C.-C., Xie, X.-M., Tong, B.-Q., & Han, B. (2023). Desiccation sensitivity characteristics and low-temperature storage of recalcitrant Quercus variabilis seed. Forests, 14, 1-15. https://doi.org/10.3390/f14091837
Copyright (c) 2025 Olivia Tonetti, Wilson Vicente Souza Pereira, Antônio César Batista Matos, Anderson Cleiton José, José Marcio Rocha Faria (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 317013/2021-1; 317242/2021-0 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
-
Fundação de Amparo à Pesquisa do Estado de Minas Gerais