AgroR: An R package and a Shiny interface for agricultural experiment analysis
Abstract
Statistical analysis is central to agricultural research, but the complexity of statistical methodologies and programming languages, such as R, often poses challenges for researchers. To address these difficulties, we present AgroR, a comprehensive R package and Shiny web application (https://uel.br/fisher.uel.br/AgroR_shiny) designed to streamline the analysis of agricultural experiments. AgroR supports a wide range of experimental designs, offering tools for analysis of variance, multiple comparison tests, and assumption validation, as well as functions for exploratory data analysis and graphical representation. The package is built for accessibility, allowing users with limited programming skills to perform advanced statistical analyses using an intuitive interface. The Shiny application enhances usability by providing a graphical interface that simplifies the running of statistical tests and visualization of results. AgroR includes functions for analyzing complex experimental designs, such as factorial and split-plot designs, and offers additional tools for graphical outputs and dataset management. Available through the CRAN repository and accessible via a web browser, AgroR has been widely adopted, with thousands of downloads and citations across the scientific literature. AgroR significantly lowers the barriers to statistical analysis in agricultural research by providing a user-friendly interface and robust statistical capabilities, thereby enabling more accurate and reliable conclusions.
Downloads
References
Arnhold, E. (2013). Pacote em ambiente R para análise de variância e análises complementares. Brazilian Journal of Veterinary Research and Animal Science, 50(6), 488-492. https://doi.org/10.11606/issn.1678-4456.v50i6p488-492
Arnhold, E. (2014). Pacote em ambiente R para automatizar estatísticas descritivas. Sigmae, 3(1), 36-42.
Bailar, J. (1986). Science, statistics, deception. Annals of Internal Medicine, 104(2), 259-260. https://doi.org/10.7326/0003-4819-104-2-259
Barbin, D. (2013). Planejamento e análise estatística de experimentos agronômicos. Editora Mecenas.
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J., (2022). Shiny: Web application framework for R. https://cran.r-project.org/web/packages/shiny/index.html
Ferreira, P. V. (2018). Estatística experimental aplicada às Ciências Agrárias. UFV.
Fox, J., S., Weisberg, D., Adler, D., Bates, G., Baud-Bovy, S., Ellison, S., & Heiberger, R. (2012). Package 'car'. R Foundation for Statistical Computing.
Gross, J., & Ligges, U. (2015). Nortest: tests for normality (R package - version 1.0-4). https://CRAN.R-project.org/package=nortest
Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., & Scheibe, S. (2016). Package 'multcomp'. Simultaneous inference in general parametric models. Project for Statistical Computing.
Knief, U., & Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53, 2576-2590. https://doi.org/10.3758/s13428-021-01587-5
Kormann, R., Rosa, E. N., Paixão, C. A., Ferreira, E. B., & Nogueira, D. A. (2019). GExpDes: Interface gráfica para o ExpDes. Sigmae, 8(2), 170-179.
Lenth, R. (2023). Emmeans: Estimated marginal means, aka least-squares means (R package - version 1.8.5). https://CRAN.R-project.org/package=emmeans
Lúcio, A. D., Schwertner, D. V., Haesbaert, F. M., Santos, D., Brunes, R. R., Ribeiro, A. L., & Lopes, S. J. (2012). Violação dos pressupostos do modelo matemático e transformação de dados. Horticultura Brasileira, 30(3), 415-423. https://doi.org/10.1590/S0102-05362012000300010
Martin, T. N., & Storck, L. (2008). Análise das pressuposições do modelo matemático em experimentos agrícolas no delineamento blocos ao acaso. In T. N. Martin, & M. F. Ziech (Eds.), Sistemas de produção agropecuária (pp. 177-196). UTFPR.
Melo, R. C., Trevisani, N., Santos, M., Guidolin, A. F., & Coimbra, J. L. M. (2020). Statistical model assumptions achieved by linear models: classics and generalized mixed. Revista Ciência Agronômica, 51(1), 1-9. https://doi.org/10.5935/1806-6690.20200015
Mendiburu, F., & Simon, R. (2015). Agricolae-Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ, 1, 1-18. https://doi.org/10.7287/peerj.preprints.1404v1
Nunes, C. A., Alvarenga, V. O., Souza Sant'ana, A., Santos, J. S., & Granato, D. (2015). The use of statistical software in food science and technology: Advantages, limitations and misuses. Food Research International, 75, 270-280. https://doi.org/10.1016/j.foodres.2015.06.011
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/
Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., Firth, D., & Ripley, M. B. (2013). Package 'MASS'. Cran R, 538, 113-120.
Shaner, G., & Finney, R. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67(8), 1051-1056. https://doi.org/10.1094/Phyto-67-1051
Wickham, H., & Chang, W. (2017). ggplot2: Create elegant data visualizations using the grammar of graphics (R package - version 2.1). https://CRAN.R-project.org/package=ggplot2
Wickham, H., Chang, W., Danenberg, P., & Eugster, M. (2017). roxygen2: In-line documentation for R (R package - versão 6.1). https://CRAN.R-project.org/package=roxygen2
Xu, W., Li, W., & Song, D. (2013). Testing normality in mixed models using a transformation method. Statistical Papers, 54, 71-84. https://doi.org/10.1007/s00362-011-0411-4.
Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2(3), 7-10.
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.







































