Synergy between cadmium and zinc in bean plants cultivated in multi contaminated soils

  • Lorena Gabriela Almeida Universidade Federal de Lavras http://orcid.org/0000-0002-2018-2206
  • Dayane Meireles da Silva Universidade Federal de Lavras
  • Adelcio de Paula Jorge Universidade Federal de Lavras
  • Kamila Rezende Dázio de Souza Universidade Federal de Lavras http://orcid.org/0000-0001-9264-2382
  • Luiz Roberto Guimarães Guilherme Universidade Federal de Lavras
  • José Donizeti Alves Universidade Federal de Lavras

Resumo

Agricultural species are subjected to a variety of biotic and abiotic stresses, which are the main limitations to crop production. In this context, contamination by trace elements is characterized as an abiotic stress that represents an environmental problem. Due to the physical and chemical similarities between cadmium and zinc, these elements may interact in the environment and may cause antagonistic or synergistic effects. In this way, physiological mechanisms to exclude, detoxify or compartmentalize trace elements that are in excess are crucial for plant survival when exposed to high concentrations of these elements. In this way, the aim of this study was to understand the physiological responses of Phaseolus vulgaris plants subjected to increasing doses of Cd and Zn for 21 days in different soil, Cambisol and Latosol. The activity of antioxidant enzymes, such as SOD, CAT, and APX; hydrogen peroxide content; lipid peroxidation; chlorophyll index; photosynthetic rate; stomatal conductance; and transpiration were analysed. The data obtained showed a specific behaviour of Phaseolus vulgaris plants in each soil analysed. Moreover, it was observed that interactions between both elements resulted in a synergistic effect, negatively affecting all of the parameters analysed.

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Lorena Gabriela Almeida, Universidade Federal de Lavras
Bióloga, mestre e doutoranda em Agronomia/Fisiologia Vegetal, Departamento de Biologia, Setor de Fisiologia Vegetal.
Dayane Meireles da Silva, Universidade Federal de Lavras
Bióloga, mestre e doutora em Agronomia/Fisiologia Vegetal, Departamento de Biologia, Setor de Fisiologia Vegetal.
Adelcio de Paula Jorge, Universidade Federal de Lavras
Engenheiro Agronômo, mestre em Agronomia/Fisiologia Vegetal, Departamento de Biologia, Setor de Fisiologia Vegetal.
Kamila Rezende Dázio de Souza, Universidade Federal de Lavras
Bióloga, pós doutoranda, mestre e doutora em Agronomia/Fisiologia Vegetal, Departamento de Biologia, Setor de Fisiologia Vegetal.
Luiz Roberto Guimarães Guilherme, Universidade Federal de Lavras

Professor Titular da Universidade Federal de Lavras.
Área: Química do Solo e Toxicologia Ambiental; Fertilidade do Solo e Adubação; Química de Interfaces; Análise de Traços e Química Ambiental; Geoquímica; Toxicologia; 
Bolsista de Produtividade em Pesquisa do CNPq - Nível 2 (***)

José Donizeti Alves, Universidade Federal de Lavras
Professor Titular da Universidade Federal de Lavras. Possui Graduação em Engenharia Agronômica pela Escola Superior de Agricultura de Lavras, hoje Universidade Federal de Lavras, Mestrado em Fisiologia Vegetal pela Universidade Federal de Viçosa, Doutorado em Solos e Nutrição de Plantas pela Universidade Federal de Viçosa e Pós-doutorado pela The Ohio State University e University of Missouri

Referências

American Public Health Association [APHA]. (1998). Standard methods for the examination of water and wastewater. Washington, D.C.: Water Environmenttal Federation, Ed 20.

Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzimology, 52, 302-310.

Carvalho, M. T. V., Amaral, D. C., Guilherme, L. R., & Aarts, M. G. (2013) Gomphrena claussenii, the first South-American metallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance. Plant Science, 180-190. DOI: 10.3389/fpls.2013.00180

Cherif, J., Mediouni, C., Ben Ammar, W., & Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). Journal of Environmental Science, 23(5), 837–844.

Clemens, S., Aarts, M. G., Thomine S., & Verbruggen N. (2013). Plant Science: the key to preventing slow cadmiun poisoning. Trends in Plants Sciences, 18(2), 92-99. DOI: 10.1016/j.tplants.2012.08.003

Conselho Nacional do Meio Ambiente [CONAMA]. (2009). Resolução no 420, de 28 de dezembro de 2009. “Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial da República Federativa do Brasil, Brasília, DF, nº 249, de 30/12/2009, 81-84.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. DOI: 10.1590/S1413-70542011000600001

Fundação Estadual do Meio ambientes [FEAM]. (2011). Valores orientadores para solos e águas subterrâneas no estado de Minas Gerais. Belo Horizonte, MG: Legenda expandida.

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I., ccurrence in higher plants. Plant Physiology, 59(2), 309-314.

Havir, E. A., & Mchale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84(2), 450-455.

Hussain, D., Haydon, M. J., Wang, Y., Wong, E., Sherson, S. M., Young, J., ... Cobbett, S. C. (2013). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 16(5), 1327–1339. DOI: 10.1105/tpc.020487

International Standard Organization [ISO]. (2013). ISO 11.269-2: determination of the effects of pollutants on soil flora, part 2: effects of chemicals on the emergence and growth of higher plants. Geneva, SW : ISO.

Malavolta, E. (1981). Manual de química agrícola: adubos e adubação. Campinas, SP: Agronômica Ceres.

Minolta Camera LTDA (1989). Manual for chlorophyll meter spad 502. Osaka: Radiometric Instruments Division, 22.

Nakano, Y.; Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. DOI: 10.1093/oxfordjournals.pcp.a076232

Organization for Economic Co-operatiom and Development [OECD]. (2006). Guidelines for testing of chemicals n° 208: terrestrial plant test: seedling emergence and seedling growth test. Retrieved on Dec. 10, 2006 from http:// www.oecd.org

Parmar, C., Freek, S. P., & Shahbaz, M. (2014). Zinc exposure has differential effects on uptake and metabolism of sulfur and nitrogen in Chinese cabbage. Journal of Plant Nutrition and Soil Science, 177(5), 748-757. DOI: 10.1002/jpln.201300369

Puga, A. P; Abreu, C. A., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmiun. Journal of Environmental Management, 15, 86-93. DOI: 10.1016/j.jenvman.2015.05.036

Scott, A. J., & Knott, M. A. (1974). Cluster analysis method for grouping means in the analysis of variance. Biometrics, 30(3), 507-512. DOI: 10.2307/2529204

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidant defense mechanism in plants under stressful conditions. Journal of Botany, 14(1), 1-26. DOI: 10.1155/2012/217037

Solti, A., Sárvàri, É., Tóth, B., Mészáros, I., & Fodor, F. (2016). Incorporation of iron into chloroplasts triggers the restoration of cadmium induced inhibition of photosynthesis. Journal of Plant Physiology, 202, 97-106. DOI: 10.1016/j.jplph.2016.06.020

Tkalec, M., Stefanic, P. P., Cvjetko, P., Sikic, S., Pavlica, M., & Balen, B. (2014). The effects of cadmiun-zinc interactions on biochemical responses in Tobacco seedlings and adult plants. PloS one, 9(1), 881-900. DOI: 10.1371/journal.pone.0087582

United States Environmental Protection Agency [USEPA]. (1998). Trimmed Spearman–Karber estimation of LC50 Values. Washington, US: USEPA.

Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. DOI: 10.1016/S0168-9452(99)00197-1

Ying, R. R, Qiu, R. L., Tang, Y. T., Hy, P. J., Chen, H. R., & Shi, T. H. (2010). Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology, 167(2), 81-87. DOI: 10.1016/j.jplph.2009.07.005.

Publicado
2018-11-13
Como Citar
Almeida, L. G., Silva, D. M. da, Jorge, A. de P., Souza, K. R. D. de, Guilherme, L. R. G., & Alves, J. D. (2018). Synergy between cadmium and zinc in bean plants cultivated in multi contaminated soils. Acta Scientiarum. Agronomy, 41(1), e35829. https://doi.org/10.4025/actasciagron.v41i1.35829

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus