Osmolyte accumulation and antioxidant metabolism during germination of vigorous maize seeds subjected to water deficit

Palavras-chave: Zea mays L, vigor, antioxidant enzymes, reserve compounds.

Resumo

The objective of this work was to evaluate the alterations of antioxidant enzyme reserves and antioxidant enzymes during germination under water deficit in maize hybrids and to associate with seed vigor, determining the mechanisms related to tolerance for this stress. Two three-way maize hybrids were characterized by their vigor at different levels of water deficit induced by polyethylene glycol 6000. Next, the seeds were hydrated at different osmotic potentials (0.0, -0.3, and -0.9 MPa) and removed at different times to assess the levels of the total soluble protein, total soluble sugars, proline, starch, and antioxidant enzymes, such as superoxide dismutase, catalase and ascorbate peroxidase. The analysis of variance, Tukey test at 5% and principal component analysis (PCA) were used. The vigorous hybrid (HT1) was more efficient than the low vigor hybrid seeds (HT2) in mobilizing the total soluble protein during the initial stages of germination and the total soluble sugars before and after root protrusion under water deficit in addition to increasing the catalase activity at the different osmotic potentials that were assessed.

Downloads

Não há dados estatísticos.

Referências

Abreu, V. M., Vilela, É. V. R., Von Pinho, R. G., Naves, G. M. F., Neta, I. C. S., Guimarães, R. M., & Carvalho, M. R. (2014). Physiological performance and expression of isozymes in maize seeds subjected to water stress. Journal of Seed Science, 36(1), 40-47. DOI: 10.1590/S2317-15372014000100005

Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. DOI: 10.1016/S0076-6879(84)05016-3

Agostini, E. A. T., Machado-Neto, N. B., & Custódio, C. C. (2013). Induction of water deficit tolerance by cold shock and salicylic acid during germination in the common bean. Acta Scientiarum. Agronomy, 35(2), 209-219. DOI: 10.4025/actasciagron.v35i2.15967

Amirjani, M. R., & Mahdiyeh, M. (2013). Antioxidative and biochemical responses of wheat. Journal of Agricultural and Biological Science, 8(4), 291-301.

Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., …Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8(69), 1-12. DOI: 10.3389/fpls.2017.00069

Ávila, M. R., Braccini, A. L., & Scapim, C. A. (2007). Teste de comprimento de plântulas sob estresse hídrico na avaliação do potencial fisiológico das sementes de milho. Revista Brasileira de Sementes, 29(2), 117-124. DOI: 10.1590/S0101-31222007000200016

Azevedo, R. A., Alas, R. M., Smith, R. J., & Lea, P. J. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, 104(2), 280-292. DOI: 10.1034/j.1399-3054.1998.1040217.x

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. DOI: 10.1007/BF00018060

Bewley, J. D. (2001). Seed Germination and Reserve Mobilization. Citable Reviews in the Life Sciences, 3(2), 1-7. DOI: 10.1002/9780470015902.a0002047.pub2

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. DOI: 10.1016/0003-2697(76)90527-3

Brito, C. D., Loureiro, M. B., Teles, C. A. S., Schuck, M. R., Fernandez, L. G., & Castro R. D. (2015). Behavior of Jatropha curcas L. seeds under osmotic stress: germination and cell cycle activity. Acta Scientiarum. Agronomy, 37(3), 279-287. DOI: 10.4025/actasciagron.v37i3.19438

Clegg, K. M. (1956). The application of the anthrone reagent to the estimation starch in cereals. Journal of the Science and Food Agriculture, 7(1), 40-44. DOI: 10.1002/jsfa.2740070108

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases I. Occurence in higher plants. Plant Physiology, 59(1), 309-314. DOI: 10.1146/annurev.bi.44.070175.001051

Han, C., Yin, X., He, D., & Yang, P. (2013). Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS ONE, 8(2), 1-9. DOI: 10.1371/journal.pone.0056947

Keunen, E., Peshev, D., Vangronsveld J., Ende, W. V. D., & Cuypers, A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell and Environment, 36(7), 1242-1255. DOI: 10.1111/pce.1206

Khayatnezhad, M., Gholamin, R., Jamaati-e-Somarin, S., & Zabihi-e-Mahmoodabad, R. (2010). Effects of salt stress levels on five maize (Zea Mays L.) cultivars at germination stage. World Applied Sciences Journal, 11(5), 504-6. DOI:10.5897/AJB11.1568

Li, H., Li, X., Zhang, D., Liu, H., & Guan, K. (2013). Effects of drought stress on the seed germination and early seedling growth of the endemic desert plant eremosparton songoricum (fabaceae). Excli Journal, 12, 89-101.

Li, W. U., Zhang, X., Ashraf, U., Mo, Z., Suo, H., & Li, G. (2017). Dynamics os seed germination, seedling growth and physiological responses of sweet corn under peg-induced water stress. Pakinstan Jounal of Botany, 49(2), 639-46.

Marcos-Filho, J. (2005). Fisiologia de sementes de plantas cultivadas. Piracicaba, SP: Fealq.

Marcos-Filho, J. (2015). Seed vigor testing : an overview of the past, present and future perspective. Scientia Agricola, 72(4), 363-374.

McCready, R. M., Guggolz, J., Siliviera, V., & Owens, H. S. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22(9), 1156-1158. DOI: 10.1021/ac60045a016

Ministério da Agricultura, Pecuária e Abastecimento [MAPA], Secretaria de Defesa Agropecuária [SDA]. (2009). Regras Para Análise de Sementes. Brasília, DF: MAPA/SDA.

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880.

Partheeban, C., Chandrasekhar, C. N., Jeyakumar, P., Ravikesavan, R., & Gnanam, R. (2017). Effect of PEG induced drought stress on seed germination and seedling characters of maize (Zea mays L.) genotypes. International Journal of Current Microbiology and Applied Sciences, 6(5), 1095-1104.

Prazeres, C. S., & Coelho, C. M. M. (2017). Hydration curve and physiological quality of maize seeds subjected to water deficit. Semina: Ciências Agrárias, 38(3), 1179-1186. DOI: 10.5433/1679-0359.2017v38n3p1179

Pritchard, S. L., Charlton, W. L., Baker, A., & Graham, I. A. (2002). Germination and storage reserve mobilization are regulated independently in Arabidopsis. The Plant Journal, 31(05), 639-647. DOI: 10.1046/j.1365-313X.2002.01376

Queiroz, R. J. B., & Cazetta, J. O. (2016). Proline and trehalose in maize seeds germinating under low osmotic. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(1), 22-28.

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from www.R-project.org

Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J. A, Hilal, M., & Prado, F. E. (2009). Soluble sugars-metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signaling & Behavior, 4(5), 388-393.

Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10(3), 296-302. DOI: 10.1016/j.pbi.2007.04.014

Silva, L. J., Dias, D. C. F. S., Sekita, M. C., & Finger, F. L. (2018). Lipid peroxidation and antioxidant enzymes of Jatropha curcas L. seeds stored at different maturity stages. Acta Scientiarum. Agronomy, 40(1), 1-10. DOI: 10.4025/actasciagron.v40i1.34978

Soriano, D., Orozco-Segovia, A., Mrquez-Guzmn, J., Kitajima, K., Gamboa-de Buen, A., & Huante, P. (2011). Seed reserve composition in 19 tree species of a tropical deciduous forest in mexico and its relationship to seed germination and seedling growth. Annals of Botany, 107(6), 939-951. DOI:10.1093/aob/mcr041

Varmuza, K., & Filzmoser, P. (2008). Introduction to multivariate statistical analysis in chemometrics. Boca Raton, FL: CRC Press.

Vaz-de-Melo, A., Santos, L. D.T., Finoto, E. L., Dias, D. C. F. S., & Alvarenga, E. M. (2012). Germinação e vigor de sementes de milho-pipoca submetidas ao estresse térmico e hídrico. Bioscience Journal, 28(5), 687-695.

Villela, F. A., Doni Filho, L., & Sequeira, E. L. (1991). Tabela de potencial osmótico em função da concentração de polietileno glicol 6.000 e da temperatura. Pesquisa Agropecuária Brasileira, 26(11/12), 1957-1991.

Publicado
2020-04-03
Como Citar
Prazeres, C. S., & Coelho, C. M. M. (2020). Osmolyte accumulation and antioxidant metabolism during germination of vigorous maize seeds subjected to water deficit. Acta Scientiarum. Agronomy, 42(1), e42476. https://doi.org/10.4025/actasciagron.v42i1.42476
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus