Expression of genes related to soil flooding tolerance in soybeans

  • Gabriele Casarotto Três Tentos Agroindustrial S/A http://orcid.org/0000-0002-7547-2155
  • Tiago Edu Kaspary INIA La Estanzuela
  • Luan Cutti Universidade Federal do Rio Grande do Sul
  • André Luis Thomas Universidade Federal do Rio Grande do Sul
  • Jose Fernandes Barbosa Neto Universidade Federal do Rio Grande do Sul
Palavras-chave: Glycine max (L.) Merr.; hypoxia; abiotic stress; metabolic alterations; RT-qPCR.

Resumo

The flooded environment brings about injuries to soybeans that vary depending on the adaptation ability of the genotype. Oxygen deprivation promotes the induction of the expression of genes related to glycolysis and fermentation pathways to maintain energy metabolism and, in addition to reducing-power consuming processes, act in the formation of adaptive structures and the maintenance of the redox status of the plant. The aim of this work was to evaluate the relative expression of genes related to soil flooding response in two contrasting soybean cultivars. Soybean plants of the sensitive (BRS 154) and tolerant (I27) cultivars at the V1 development stage were submitted to the flooding and control conditions (without flooding) for 0, 24, 48, and 96 hours. The relative expression of genes associated with flooding, including enolase (ENO), alcohol dehydrogenase 1 (ADH1), alanine aminotransferase 2 (ALAT2), hemoglobin 1 (GLB1), LOB41 domain-containing protein (LBD41), xyloglucan endotransglycosylase (XETP) and ascorbate peroxidase (APX2), was evaluated by means of RT-qPCR. The relative expression, in general, increased with flooding, especially in the root tissue. Cultivar I27 responded positively as observed by the expression of the maintenance genes of energy metabolism, structural changes and detoxification, suggesting the presence of three tolerance mechanisms in the flooding response.

Downloads

Não há dados estatísticos.

Referências

Alam, I., Lee, D. G., Kim, K. H., Park, C. H., Sharmin, S. A., Lee, H., … Lee, B. H. (2010). Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. Journal of Bioscience, 35(1), 49-62. DOI: 10.1007/s12038-010-0007-5

Bailey-Serres, J., & Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. Annual Review of Plant Biology, 59(1), 313-339. DOI: 10.1146/annurev.arplant.59.032607.092752

Byfield, G. E., Xue, H., & Upchurch, R. G. (2006). Two genes from soybean encoding soluble Δ9 stearoyl-ACP desaturases. Crop Science, 46(2), 840-846. DOI: 10.2135/cropsci2005.06-0172

Dussault, A. A., & Pouliot, M. (2006). Rapid and simple comparison of messenger RNA levels using real-time PCR. Biological Procedures Online, 8(1), 1-10. DOI: 10.1251/bpo114

Gupta, K. J., & Igamberdiev, A. U. (2016). Reactive nitrogen species in mitochondria and their implications in plant energy status and hypoxic stress tolerance. Frontiers in Plant Science, 7(369), 1-6. DOI: 10.3389/fpls.2016.00369

Hossain, Z., Khatoon, A., & Komatsu, S. (2013). Soybean proteomics for unraveling abiotic stress response mechanism. Journal of Proteome Research, 12(1), 4670-4684. DOI: 10.1021/pr400604b

Irfan, M., Hayat, S., Hayat, Q., Afroz, S., & Ahmad, A. (2010). Physiological and biochemical changes in plants under waterlogging. Protoplasma, 241(1), 3-17. DOI: 10.1007/s00709-009-0098-8

Ismail, A. M., Ella, E. S., Vergara, G. V., & Mackill, D. J. (2009). Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Annals of Botany, 103(2), 197-209. DOI: 10.1093/aob/mcn211

Jian, B., Liu, B., Bi, Y., Hou, W., Wu, C., & Han, T. (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology, 9(59), 1-14. DOI: 10.1186/1471-2199-9-59

Kausar, R., Hossain, Z., Makino, T., & Komatsu, S. (2012). Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Molecular Biology Reports, 39(12), 10573-10579. DOI: 10.1007/s11033-012-1945-9

Khatoon, A. Rehman, S., Oh, M. W., Woo, S. H., & Komatsu, S. (2012). Analysis of response mechanism in soybean under low oxygen and flooding stresses using gel-base proteomics technique. Molecular Biology Reports, 39(12), 10581-10594. DOI: 10.1007/s11033-012-1946-8

Komatsu, S., Yamamoto, R., Nanjo, Y., Mikami, Y., Yunokawa, H., & Sakata, K. (2009). A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. Journal of Proteome Research, 8(1), 4766-4778. DOI: 10.1021/pr900460x

Komatsu, S., Kobayashi, Y., Nishizawa, K., Nanjo, Y., & Furukawa, K. (2010). Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids, 39(5), 1435-1449. DOI: 10.1007/s00726-010-0608-1

Magneshi, L., & Perata, P. (2009). Rice germination and seedling growth in the absence of oxygen. Annals of Botany, 103(2), 181-196. DOI: 10.1093/aob/mcn121

Nakayama, T. J., Rodrigues, F. A., Neumaier N., Marcelino-Guimarães, F. C., Farias, J. R. B., Oliveira, M. C. N., … Nepomuceno, A. L. (2014). Reference genes for quantitative real-time polymerase chain reaction studies in soybean plants under hypoxic conditions. Genetics and Molecular Research, 13(1), 860-871. DOI: 10.4238/2014

Nanjo, Y., Jang, H. Y., Kim, H. S., Hiraga, S., Woo, S. W., & Komatsu, S. (2014). Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes. Phytochemistry, 106(1), 25-36. DOI: 10.1016/j.phytochem.2014.06.017

Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., & Tasaka, M. (2007). ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell, 19(1), 118-130. DOI: 10.1105/tpc.106.047761

Rhine M. D., Stevens, G., Shannon, G., Wrather, A., & Sleper, D. (2010). Yield and nutritional responses to waterlogging of soybean cultivars. Irrigation Science, 28(1), 135-142. DOI: 10.1007/s00271-009-0168-x

Riquelme, A., & Hinrichsen, P. (2015). Non-symbiotic hemoglobin and its relation with hypoxic stress. Chilean Journal of Agricultural Research, 75(1), 80-89. DOI: 10.4067/S0718-58392015000300009

Rocha, M., Licausi, F., Araújo, W. L., Nunes-Nesi, A., Sodek, L., Fernie, A. R., & Dongen, J. T. V. (2010). Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiology, 152(3), 1501-1513. DOI: 10.1104/pp.109.150045

Sasidharan, R., Mustroph, A., Boonman, A., Akman, M., Ammerlaan, A. M. H., Breit, T., … Tienderen P. H. V. (2013). Root transcript profiling of two Rorippa species reveals gene clusters associated with extreme submergence tolerance. Plant Physiology, 163(3), 1277-1292. DOI: 10.1104/pp.113.222588

Sayama, T., Nakazaki, T., Ishikawa, G., Yagasaki, K., Yamada, N., Hirota, N., … Tanisaka, T. (2009). QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Science, 176(4), 514-521. DOI: 10.1016/j.plantsci.2009.01.007

Shi, F., Yamamoto, R., Shimamura, S., Hiraga, S., Nakayama, N., Nakamura, T., … Komatsu, S. (2008). Cytosolic ascorbate peroxidase 2 (cAPX2) is involved in the soybean response to flooding. Phytochemistry, 69(6), 1295-1303. DOI: 10.1016/j.phytochem.2008.01.007

Tuomi, J. M., Voorbraak, F., Jones, D. L., & Ruijter, J. M. (2010). Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods, 50(4), 313-322. DOI: 10.1016/j.ymeth.2010.02.003

Valliyodan, B., Toai, T. T. V., Alves, J. D., Goulart, P. F. P., Lee, J. D., Fritschi, F. B., … Nguyen, H. T. (2014). Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). International Journal of Molecular Sciences, 15(1), 17622-17643. DOI: 10.3390/ijms151017622

van Veen, H., Vashisht, D., Akman, M., Girke, T., Mustroph, A., Reinen, E., … Sasidharan, R. (2016). Transcriptomes of eight Arabidopsis thaliana accessions reveal core conserved, genotype- and organ-specific responses to flooding stress. Plant Physiology, 172(2), 668-689. DOI: 10.1104/pp.16.00472

Voesenek, L. A. C. J., & Bailey-Serres, J. (2015). Flood adaptive traits and processes: an overview. New Phytologist, 206(1), 57-73. DOI: 10.1111/nph.13209

Voesenek, L. A. C. J., & Sasidharan, R. (2013). Ethylene-and oxygen signaling-drive plant survival during flooding. Plant Biology, 15(3), 426-435. DOI: 10.1111/plb.12014

Wang, X., Oh, M. W., Sakata, K., & Komatsu, S. (2016) Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses. Journal of Proteomics, 130(1), 42-55. DOI: 10.1016/j.jprot.2015.09.007

Xie, F., Xiao, P., Chen, D., Xu, L., & Zhang, B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology, 80(1), 75-84. DOI: 10.1007/s11103-012-9885-2

Publicado
2019-09-05
Como Citar
Casarotto, G., Kaspary, T. E., Cutti, L., Thomas, A. L., & Barbosa Neto, J. F. (2019). Expression of genes related to soil flooding tolerance in soybeans. Acta Scientiarum. Agronomy, 41(1), e42709. https://doi.org/10.4025/actasciagron.v41i1.42709
Seção
Genética e Melhoramento

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus