High genetic differentiation of grapevine rootstock varieties determined by molecular markers and artificial neural networks
Resumo
The genetic differentiation of grapevine rootstock varieties was inferred by the Artificial Neural Network approach based on the Self-Organizing Map algorithm. A combination of RAPD and SSR molecular markers, yielding polymorphic informative loci, was used to determine the genetic characterization among the rootstock varieties 420-A, Schwarzmann, IAC-766 Campinas, Traviú, Kober 5BB, and IAC-572 Jales. A neural network algorithm, based on allelic frequency, showed that the individual grapevine rootstocks (n = 64) were grouped into three genetically differentiated clusters. Cluster 1 included only the Kober 5BB rootstock, Cluster 2 included rootstocks of the varieties Traviú and IAC-572, and Cluster 3 included 420-A, Schwarzmann and IAC-766 plants. Evidence from the current study indicates that, despite the morphological similarities of the 420-A and Kober 5BB varieties, which share the same genetic origin, two new varieties were generated that are genetically divergent and show differences in performance.
Downloads
Referências
Alizadeh, M., Singh, S.K., Jhang, T., & Sharma, T.R. (2008). Inter Simple Sequence Repeat analysis to confirm genetic stability of micropropagated plantlets in three grape (Vitis spp) rootstock genotypes. Journal of Plant Biochemistry & Biotechnology, 17(1), 77-80. Doi: 10.1007/BF03263264
Babu, B.K., Agrawal, P.K., Mahajan, V., & Gupta, H.S. (2009). Molecular and biochemical characterization of short duration quality protein maize. Journal of Plant Biochemistry and Biotechnology, 18(1), 93-96. Doi: 10.1007/BF03263302
Barankova, K. (2014). Evaluation of intravarietal homogeneity within grapevine rootstock cultivars as revealed by SSR fingerprinting. European Scientific Journal, 2, 402-408. ISSN: 1857 – 7881
Bowers, J.E., Boursiquot, J.M., This, P., Chu, K., Johanssen, H., & Meredith, C. (1999). Historical genetics: The parentage of Chardonnay, Gamay and other wine grapes of Northeastern France. Science, 285(5433), 1562-15659. Doi: 10.1126/science.285.5433.1562
Bowers, J.E., Dangl, G.S., Vignani, R., & Meredith, C.P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 39(4), 628-633. Doi: 10.1139/g96-080
Camargo, U.A. (1998). Cultivares para a Viticultura Tropical no Brasil. Informe Agropecuário – EPAMIG, 19(194), 15-19.
Cookson, S.J., & Ollat, N. (2013). Grafting with rootstocks induces extensive transcriptional re-programming in the shoot apical meristem of grapevine. BMC Plant Biology, 13(2), 147-161. Doi: 10.1186/1471-2229-13-147.
Crespan, M. (2004). Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theoretical and Applied Genetics, 108(2), 231–237. Doi: 10.1007/s00122-003-1419-5
De Andre’s, M.T., Benito, A.G., Pèrez-Rivera, G., Ocete, R., Lopez, M.A., Gaforio, L., Muñoz, G., Cabello, F., Martínez Zapater, J.M., & Arroyo-Garcia, R. (2012). Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Molecular Ecology, 21(4), 800–816. Doi: 10.1111/j.1365-294X.2011.05395.x
Di Gaspero G., Cipriani G., Marrazzo M.T., Andreetta D., Castro M.J.P., Peterlunger E., & Testolin R. (2005). Isolation of (AC)n-microsatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection. Molecular Breeding, 15(1), 11–20. Doi: 10.1007/s11032-004-1362-4
Di Gaspero, G., Peterlunger, E., Testolin, R., Edwards, K.J., & Cipriani, G. Conservation of microsatellite loci within the genus Vitis. Theoretical and Applied Genetics, 101(1-2), 301-308, 2000. Doi: 10.1007/s001220051483.
Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K., & Mattick, J.S. (1991). "Touchdown" PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research, 19(14), 4008-4008.
Dzhambazova, T., Hvarleva, T., Hadjinicoli, A., Tsvetkov, I., Atanassov, A. & Atanassov, I. (2007). Characterization of grapevine rootstocks using microsatelite markers. Biotechnology & Biotechnological Equipment, 21(1), 58-62. Doi: 10.1080/13102818.2007.10817414
Emanuelli F., Lorenzi S., Grzeskowiak L., Catalano V., Stefanini M., Troggio M., Myles S., Martinez-Zapater J.M., Zyprian E., Moreira F.M., & Grando M.S. (2013). Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 13(39), 3-17. Doi: 10.1186/1471-2229-13-39
Ergül, A., Aras, S., & Söylemezoğlu, G. (2010). Amplified fragment length polymorphism analysis of grapevine rootstock genotypes in Turkey. Genetics and Molecular Research, 9(2), 811-819. Doi: 10.4238/vol9-2gmr766
Felsenstein, J. (1989). PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics, 5, 164-166.
Guo, L., Guo, M-X., Hou, X-G., & Zhang, G-H. (2014). Molecular diversity analysis of grape varieties based on iPBS markers. Biochemical Systematics and Ecology 52, 27-32. Doi: 10.1016/j.bse.2013.10.008
Hoisington, D., Khairallah, M., & González-Léon, D. (1994). Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. Second Edition, Mexico, D.F.: CIMMYT, 50 p.
Jahnke, G., Majer, J., Varga, P., & Szöke, B. (2011). Analysis of clones of Pinots grown in Hungary by SSR markers. Scientia Horticulturae, 129(1), 32–37. Doi: 10.1016/j.scienta.2011.03.004
Jaillon, O., Aury, J-M., Noel, B., Policriti, A., Clepet, C., & Casagrande, A. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161), 463–467. Doi: 10.1038/nature06148
Keller, M. (2010). The Science of grapevines. Anatomy and phisiology. Academic Press. ISBN: 9780123748812
Kishino, A.Y., Carvalho, S.L.C., & Roberto, S.R. (2007). Viticultura tropical: o sistema de produção do Paraná. Londrina: IAPAR, 362 p. ISBN: 978-85-881-8428-2
Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21, 1-6. Doi: 10.1016/S0925-2312(98)00030-7
Laucou, V., Lacombe, T., Dechesne, F., Siret, R., Bruno, J.P., Dessup, M., Ortigosa, P., Parra, P. Roux, C., Santoni, S., Varès, D., Péros, J.P., Boursiquot, J.M., & This, P. (2011). High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theoretical and Applied Genetics, 122(6), 1233-1245. Doi: 10.1007/s00122-010-1527-y
Mora, F., Castillo, D., Lado, B., Matus, I., Poland, J., Belzile, F., Von Zitzewitz, J. & Del Pozo, A. (2015). Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers. Molecular Breeding, 35(2), 69. Doi: 10.1007/s11032-015-0264-y
Nachtigal, J.C., & Camargo, U.A. (2005). Sistema de produção de uva de mesa no Norte do Paraná. Embrapa Uva e Vinho. Available from http://sistemasdeproducao.cnptia.embrapa.br/
Oliveira-Collet, S.A., Collet, M.A., & Machado, M.F.P.S. (2005). Differential gene expression for isozymes in somatic mutants of Vitis vinifera L. (Vitaceae). Biochemical Systematic and Ecology, 33(7), 691–703. Doi: 10.1016/j.bse.2004.12.016
Peakall, R., & Smouse, P.E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28(19), 2537-2539. Doi: 10.1093/bioinformatics/bts460
Pelsy, F. (2010). Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity, 104(4), 331–340. Doi: 10.1038/hdy.2009.161
Pommer, C.V., Passos, I.R.S., Terra, M.M., & Pires, E.J.P. (1997). Variedades de videira para o estado de São Paulo. Boletim Técnico do Instituto Agronômico de Campinas (IAC 166), 59 p.
Roberto, S.R., Kanai, H.T., & Yano, M.Y. (2004). Enraizamento e brotação de estacas lenhosas de seis porta-enxertos de videira submetidas à estratificação. Acta Scientiarum Agronomy, 26(1), 79-84. Doi: 10.4025/actasciagron.v26i1.1963
Sabir, A., Doğan, Y., Tangolar, S., & Kafkas, S. (2010). Analysis of genetic relatedness among grapevine rootstocks by AFLP (Amplified Fragment Length Polymorphism) markers. Journal of Food, Agriculture & Environment 8(1), 210-213. Doi: 10.1234/4.2010.1485
Sant’Ana, G.C., Ferreira, J.L., Rocha, H.S., Borém, A., Pasqual, M., & Cançado, G.M.A. (2012). Comparison of a retrotransposon-based marker with microsatellite markers for discriminating accessions of Vitis vinifera. Genetics and Molecular Research, 11(2), 1507-1525. Doi: 10.4238/2012.May.21.8
Santos Neto, J.R.A. (1973). A Cultura da videira. Campinas: Instituto Agronômico, 108 p.
Scott K.D., Eggler P., Seaton G., Rossetto M., Ablett E.M., Lee L.S., & Henry R.J. (2000). Analysis of SSRs derived from grape ESTs. Theoretical and Applied Genetics, 100(5), 723-726. Doi: 10.1007/s001220051344
Sefc, K.M., Regner, F., Glössl, J., & Steinkellner, H. (1998). Genotyping of grapevine and rootstock cultivars using microsatellite markers. Vitis 37(1), 15-20.
Sousa, J.S.I. (1969). Uvas para o Brasil. São Paulo: Melhoramentos, 456 p.
Suriano, S., Alba, V., Di Gennaro, D., Suriano, M.S., Savino, M., & Tarricone, L. Genotype/rootstocks effect on the expression of anthocyanins and flavans in grapes and wines of Greco Nero n. (Vitis vinifera L.). Scientia Horticulturae 209(12), 309–315, 2016. Doi: 10.1016/j.scienta.2016.07.004
Thomas, M.R., & Scott, N.S. (1993). Microsatellites repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites, STSs. Theoretical and Applied Genetics, 86(8), 985-990. Doi: 10.1007/BF00211051
Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (1999). Self-organizing map in Matlab: the SOM Toolbox. Proceedings of the Matlab DSP Conference. Finland, 99, 16-17.
Vřsĭc, S., Pulko, B., & Kocsis, L. (2015). Factors influencing grafting success and compatibility of grape rootstocks. Scientia Horticulturae, 181(1), 168–173. Doi: 10.1016/j.scienta.2014.10.058
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., & Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531-6535.
Wolfe, W.H., 1976. Identification of grape varieties by isozymes banding patterns. American Journal of Enology and Viticulture, 27(2), 68-73.
Yeh, F.C., Boyle, T.Y.Z., & Xiyan, J.M. (1999). POPGENE Version 1.31: Microsoft Window-based freeware for population genetic analysis. University of Alberta and Center for International Forestry Research. https://sites.ualberta.ca/~fyeh/popgene.pdf
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.







































