High genetic differentiation of grapevine rootstock varieties determined by molecular markers and artificial neural networks

  • Marcia Oliveira Costa Universidade Estadual de Maringá
  • Livia Santos Capel Universidade Estadual de Maringá
  • Carlos Maldonado Universidade de Talca
  • Freddy Mora Universidade de Talca
  • Claudete Aparecida Mangolin Universidade Estadual de Maringá https://orcid.org/0000-0002-1653-3106
  • Maria de Fátima Pires da Silva Machado Universidade Estadual de Maringá

Resumo

The genetic differentiation of grapevine rootstock varieties was inferred by the Artificial Neural Network approach based on the Self-Organizing Map algorithm. A combination of RAPD and SSR molecular markers, yielding polymorphic informative loci, was used to determine the genetic characterization among the rootstock varieties 420-A, Schwarzmann, IAC-766 Campinas, Traviú, Kober 5BB, and IAC-572 Jales. A neural network algorithm, based on allelic frequency, showed that the individual grapevine rootstocks (n = 64) were grouped into three genetically differentiated clusters. Cluster 1 included only the Kober 5BB rootstock, Cluster 2 included rootstocks of the varieties Traviú and IAC-572, and Cluster 3 included 420-A, Schwarzmann and IAC-766 plants. Evidence from the current study indicates that, despite the morphological similarities of the 420-A and Kober 5BB varieties, which share the same genetic origin, two new varieties were generated that are genetically divergent and show differences in performance.

Downloads

Não há dados estatísticos.

Referências

Alizadeh, M., Singh, S.K., Jhang, T., & Sharma, T.R. (2008). Inter Simple Sequence Repeat analysis to confirm genetic stability of micropropagated plantlets in three grape (Vitis spp) rootstock genotypes. Journal of Plant Biochemistry & Biotechnology, 17(1), 77-80. Doi: 10.1007/BF03263264

Babu, B.K., Agrawal, P.K., Mahajan, V., & Gupta, H.S. (2009). Molecular and biochemical characterization of short duration quality protein maize. Journal of Plant Biochemistry and Biotechnology, 18(1), 93-96. Doi: 10.1007/BF03263302

Barankova, K. (2014). Evaluation of intravarietal homogeneity within grapevine rootstock cultivars as revealed by SSR fingerprinting. European Scientific Journal, 2, 402-408. ISSN: 1857 – 7881

Bowers, J.E., Boursiquot, J.M., This, P., Chu, K., Johanssen, H., & Meredith, C. (1999). Historical genetics: The parentage of Chardonnay, Gamay and other wine grapes of Northeastern France. Science, 285(5433), 1562-15659. Doi: 10.1126/science.285.5433.1562

Bowers, J.E., Dangl, G.S., Vignani, R., & Meredith, C.P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 39(4), 628-633. Doi: 10.1139/g96-080

Camargo, U.A. (1998). Cultivares para a Viticultura Tropical no Brasil. Informe Agropecuário – EPAMIG, 19(194), 15-19.

Cookson, S.J., & Ollat, N. (2013). Grafting with rootstocks induces extensive transcriptional re-programming in the shoot apical meristem of grapevine. BMC Plant Biology, 13(2), 147-161. Doi: 10.1186/1471-2229-13-147.

Crespan, M. (2004). Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theoretical and Applied Genetics, 108(2), 231–237. Doi: 10.1007/s00122-003-1419-5

De Andre’s, M.T., Benito, A.G., Pèrez-Rivera, G., Ocete, R., Lopez, M.A., Gaforio, L., Muñoz, G., Cabello, F., Martínez Zapater, J.M., & Arroyo-Garcia, R. (2012). Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Molecular Ecology, 21(4), 800–816. Doi: 10.1111/j.1365-294X.2011.05395.x

Di Gaspero G., Cipriani G., Marrazzo M.T., Andreetta D., Castro M.J.P., Peterlunger E., & Testolin R. (2005). Isolation of (AC)n-microsatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection. Molecular Breeding, 15(1), 11–20. Doi: 10.1007/s11032-004-1362-4

Di Gaspero, G., Peterlunger, E., Testolin, R., Edwards, K.J., & Cipriani, G. Conservation of microsatellite loci within the genus Vitis. Theoretical and Applied Genetics, 101(1-2), 301-308, 2000. Doi: 10.1007/s001220051483.

Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K., & Mattick, J.S. (1991). "Touchdown" PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research, 19(14), 4008-4008.

Dzhambazova, T., Hvarleva, T., Hadjinicoli, A., Tsvetkov, I., Atanassov, A. & Atanassov, I. (2007). Characterization of grapevine rootstocks using microsatelite markers. Biotechnology & Biotechnological Equipment, 21(1), 58-62. Doi: 10.1080/13102818.2007.10817414

Emanuelli F., Lorenzi S., Grzeskowiak L., Catalano V., Stefanini M., Troggio M., Myles S., Martinez-Zapater J.M., Zyprian E., Moreira F.M., & Grando M.S. (2013). Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 13(39), 3-17. Doi: 10.1186/1471-2229-13-39

Ergül, A., Aras, S., & Söylemezoğlu, G. (2010). Amplified fragment length polymorphism analysis of grapevine rootstock genotypes in Turkey. Genetics and Molecular Research, 9(2), 811-819. Doi: 10.4238/vol9-2gmr766

Felsenstein, J. (1989). PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics, 5, 164-166.

Guo, L., Guo, M-X., Hou, X-G., & Zhang, G-H. (2014). Molecular diversity analysis of grape varieties based on iPBS markers. Biochemical Systematics and Ecology 52, 27-32. Doi: 10.1016/j.bse.2013.10.008

Hoisington, D., Khairallah, M., & González-Léon, D. (1994). Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. Second Edition, Mexico, D.F.: CIMMYT, 50 p.

Jahnke, G., Majer, J., Varga, P., & Szöke, B. (2011). Analysis of clones of Pinots grown in Hungary by SSR markers. Scientia Horticulturae, 129(1), 32–37. Doi: 10.1016/j.scienta.2011.03.004

Jaillon, O., Aury, J-M., Noel, B., Policriti, A., Clepet, C., & Casagrande, A. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161), 463–467. Doi: 10.1038/nature06148

Keller, M. (2010). The Science of grapevines. Anatomy and phisiology. Academic Press. ISBN: 9780123748812

Kishino, A.Y., Carvalho, S.L.C., & Roberto, S.R. (2007). Viticultura tropical: o sistema de produção do Paraná. Londrina: IAPAR, 362 p. ISBN: 978-85-881-8428-2

Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21, 1-6. Doi: 10.1016/S0925-2312(98)00030-7

Laucou, V., Lacombe, T., Dechesne, F., Siret, R., Bruno, J.P., Dessup, M., Ortigosa, P., Parra, P. Roux, C., Santoni, S., Varès, D., Péros, J.P., Boursiquot, J.M., & This, P. (2011). High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theoretical and Applied Genetics, 122(6), 1233-1245. Doi: 10.1007/s00122-010-1527-y

Mora, F., Castillo, D., Lado, B., Matus, I., Poland, J., Belzile, F., Von Zitzewitz, J. & Del Pozo, A. (2015). Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers. Molecular Breeding, 35(2), 69. Doi: 10.1007/s11032-015-0264-y

Nachtigal, J.C., & Camargo, U.A. (2005). Sistema de produção de uva de mesa no Norte do Paraná. Embrapa Uva e Vinho. Available from http://sistemasdeproducao.cnptia.embrapa.br/

Oliveira-Collet, S.A., Collet, M.A., & Machado, M.F.P.S. (2005). Differential gene expression for isozymes in somatic mutants of Vitis vinifera L. (Vitaceae). Biochemical Systematic and Ecology, 33(7), 691–703. Doi: 10.1016/j.bse.2004.12.016

Peakall, R., & Smouse, P.E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28(19), 2537-2539. Doi: 10.1093/bioinformatics/bts460

Pelsy, F. (2010). Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity, 104(4), 331–340. Doi: 10.1038/hdy.2009.161

Pommer, C.V., Passos, I.R.S., Terra, M.M., & Pires, E.J.P. (1997). Variedades de videira para o estado de São Paulo. Boletim Técnico do Instituto Agronômico de Campinas (IAC 166), 59 p.

Roberto, S.R., Kanai, H.T., & Yano, M.Y. (2004). Enraizamento e brotação de estacas lenhosas de seis porta-enxertos de videira submetidas à estratificação. Acta Scientiarum Agronomy, 26(1), 79-84. Doi: 10.4025/actasciagron.v26i1.1963

Sabir, A., Doğan, Y., Tangolar, S., & Kafkas, S. (2010). Analysis of genetic relatedness among grapevine rootstocks by AFLP (Amplified Fragment Length Polymorphism) markers. Journal of Food, Agriculture & Environment 8(1), 210-213. Doi: 10.1234/4.2010.1485

Sant’Ana, G.C., Ferreira, J.L., Rocha, H.S., Borém, A., Pasqual, M., & Cançado, G.M.A. (2012). Comparison of a retrotransposon-based marker with microsatellite markers for discriminating accessions of Vitis vinifera. Genetics and Molecular Research, 11(2), 1507-1525. Doi: 10.4238/2012.May.21.8

Santos Neto, J.R.A. (1973). A Cultura da videira. Campinas: Instituto Agronômico, 108 p.

Scott K.D., Eggler P., Seaton G., Rossetto M., Ablett E.M., Lee L.S., & Henry R.J. (2000). Analysis of SSRs derived from grape ESTs. Theoretical and Applied Genetics, 100(5), 723-726. Doi: 10.1007/s001220051344

Sefc, K.M., Regner, F., Glössl, J., & Steinkellner, H. (1998). Genotyping of grapevine and rootstock cultivars using microsatellite markers. Vitis 37(1), 15-20.

Sousa, J.S.I. (1969). Uvas para o Brasil. São Paulo: Melhoramentos, 456 p.

Suriano, S., Alba, V., Di Gennaro, D., Suriano, M.S., Savino, M., & Tarricone, L. Genotype/rootstocks effect on the expression of anthocyanins and flavans in grapes and wines of Greco Nero n. (Vitis vinifera L.). Scientia Horticulturae 209(12), 309–315, 2016. Doi: 10.1016/j.scienta.2016.07.004

Thomas, M.R., & Scott, N.S. (1993). Microsatellites repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites, STSs. Theoretical and Applied Genetics, 86(8), 985-990. Doi: 10.1007/BF00211051

Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (1999). Self-organizing map in Matlab: the SOM Toolbox. Proceedings of the Matlab DSP Conference. Finland, 99, 16-17.

Vřsĭc, S., Pulko, B., & Kocsis, L. (2015). Factors influencing grafting success and compatibility of grape rootstocks. Scientia Horticulturae, 181(1), 168–173. Doi: 10.1016/j.scienta.2014.10.058

Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., & Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531-6535.

Wolfe, W.H., 1976. Identification of grape varieties by isozymes banding patterns. American Journal of Enology and Viticulture, 27(2), 68-73.

Yeh, F.C., Boyle, T.Y.Z., & Xiyan, J.M. (1999). POPGENE Version 1.31: Microsoft Window-based freeware for population genetic analysis. University of Alberta and Center for International Forestry Research. https://sites.ualberta.ca/~fyeh/popgene.pdf

Publicado
2019-09-20
Como Citar
Costa, M. O., Capel, L. S., Maldonado, C., Mora, F., Mangolin, C. A., & Machado, M. de F. P. da S. (2019). High genetic differentiation of grapevine rootstock varieties determined by molecular markers and artificial neural networks. Acta Scientiarum. Agronomy, 42(1), e43475. https://doi.org/10.4025/actasciagron.v42i1.43475
Seção
Genética e Melhoramento

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus