Dynamic behavior of the macauba palm (Acrocomia aculeata) fruit-rachilla system using the stochastic finite element method

Palavras-chave: biodiesel; stochastic processes; natural frequencies; modes of vibration; palm tree.

Resumo

The search for alternative energy sources has fomented the study of several crops. The macauba palm crop, for instance, has been highlighted because of its particular relevance in Brazil due to its wide distribution across Brazilian territory and its potential for yielding high amounts of oil per cultivated hectare. However, the species is still most commonly harvested via extractivism, which results in low yields. Therefore, we aimed to analyze the dynamic behavior of the fruit-rachilla system when subjected to mechanical vibration to gather baseline information for the subsequent development of macauba harvesting machines. The fruit-rachilla system of the species was modeled for different fruit maturation stages and plant accessions. Natural frequencies and modes of vibration were determined by the stochastic finite element method (FEM), adopting the specific mass and the modulus of elasticity of the system as random variables, which enabled us to compile a dataset of natural frequencies based on the variability of the system properties. The mean values of the natural frequencies obtained in the vibration assays were 26.02 Hz at the green maturation stage and 21.22 Hz at the ripe maturation stage. The mean values of natural frequencies found in the simulation by stochastic FEM, referring to the third mode of vibration, were 26.05 Hz at the green maturation stage and 21.23 Hz at the ripe maturation stage. We concluded that the natural frequencies of the macauba fruit-rachilla system on the basis of different plant accessions showed a decreasing behavior during fruit maturation. The modes of vibration characterized by pendulum displacement did not differ among plant accessions or between fruit maturation stages.

Downloads

Não há dados estatísticos.

Referências

Aguilera, E., Guzmán, G. I., Molina, M. G., Soto, D., & Infante-Amate, J. (2019). From animals to machines. The impact of mechanization on the carbon footprint of traction in Spanish agriculture: 1900-2014. Journal of Cleaner Production, 221, 295-305. DOI: 10.1016/j.jclepro.2019.02.247

Coelho, A. L. F., Santos, F. L., Pinto, F. A. C., & Queiroz, D. M. (2015). Detachment efficiency of fruits from coffee plants subjected to mechanical vibrations. Pesquisa Agropecuária Tropical, 45(4), 406-412. DOI: 10.1590/1983-40632015v4536227

Coelho, A. L. F., Santos, F. L., Queiroz, D. M., & Pinto, F. A. C. (2016). Dynamic behavior of the coffee fruit-steam-branch system using stochastic finite element method. Coffee Science, 11(1), 1-10. DOI: 10.25186/cs.v11i1.942

Hien, T. D., & Noh, H-C. (2017). Stochastic isogeometric analysis of free vibration of functionally graded plates considering material randomness. Computer Methods in Applied Mechanics and Engineering, 318, 845-863. DOI: 10.1016/j.cma.2017.02.007

Lanes, E., Costa, P. M. A., & Motoike, S. Y. (2014). Alternative fuels: Brazil promotes aviation biofuels. Nature, 511, 31. DOI: 10.1038/511031a

National Instruments Corporation [NIC]. (1998). LabVIEW: graphical programming for instrumentation, version 5.0 [1 CD-ROOM]. Austin, US: NIC.

Pezzi, F., & Caprara, C. (2009). Mechanical grape harvesting: investigation of the transmission of vibrations. Biosystems Engineering, 103(3), 281-286. DOI: 10.1016/j.biosystemseng.2009.04.002

Pires, T. P., Sousa, E. S., Kuki, K. N., & Motoike, S. Y. (2013). Ecophysiological traits of the macaw palm: a contribution towards the domestication of a novel oil crop. Industrial Crops and Products, 44(1), 200-210. DOI: 10.1016/j.indcrop.2012.09.029

Press, W. H.; Vetterling, W. T., Teukolsky, S. A., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge, UK: Cambridge University Press.

Rao, S. S. (2011). Mechanical Vibrations (5th ed.). New Jersey, US: Pearson Education.

Rangel, J. P., Queiroz, D. M., Pinto, F. A. C., Santos, F. L., & Valente, D. S. M. (2019). Geometric, physical and mechanical properties of fruit-rachilla the macaúba palm (Acrocomia aculeata) considering diffrent sampling sites in the state of Minas Gerais in Brazil. Journal of Experimental Agriculture International, 38(3), 1-6. DOI: 10.9734/jeai/2019/v38i330301

Reale, C., Xue, J., Pan, Z., & Gavin, K. (2015). Deterministic and probabilistic multi-modal analysis of slope stability. Computers and Geotechnics, 66, 172-179. DOI: 10.1016/j.compgeo.2015.01.017

Santos, F. L., Queiroz, D. M., Pinto, F. A. C., & Santos, N. T. (2010). Analysis of the coffee harvesting process using an electromagnetic shaker. Acta Scientiarum. Agronomy, 32(3), 373-378. DOI: 10.4025/actasciagron.v32i3.6782

Santos, F. L., Queiroz, D. M., Valente, D. S. M., & Coelho, A. L. F. (2015). Simulation of the dynamic behavior of the coffee fruit-stem system using finite element method. Acta Scientiarum. Technology, 37(1), 11-17. DOI: 10.4025/actascitechnol.v37i1.19814

Srivastava, A. K., Goering, C. E., & Rohrbach, R. P. (1996). Engineering principles of agricultural machines. Michigan, US: ASAE.

Stefanou, G. (2009). The stochastic finite element method: Past, present and future. Computer Methods Applied Mechanics and Engineerings, 198(9-12), 1031-1051. DOI: 10.1016/j.cma.2008.11.007

Velloso, N. S., Santos, F. L., Pinto, F. A. C., Villar, F. M., & Valente, D. S. M. (2017). Mechanical properties of the macaw palm fruit-rachilla system. Pesquisa Agropecuária Tropical, 47(2), 218-225. DOI: 10.1590/1983-40632016v4745792

Villar, F. M. M., Pinto, F. A. C., Santos, F. L., Grossi, J. A. S., & Velloso, N. S. (2017). Elasticity modulus and damping ratio of macaw palm rachillas. Ciência Rural, 47(2), 1-8. DOI: 10.1590/0103-8478cr20160289

Villibor, G. P., Santos, F. L., Queiroz, D. M., Khoury Junior, J. K., & Pinto, F. A. C. (2016). Determination of modal properties of the coffee fruit-stem system using high speed digital video and digital image processing. Acta Scientiarum. Technology, 38(1), 41-48. DOI: 10.4025/actascitechnol.v38i1.27344

Yang, H., San, Y., Chen, Y., Wang, X., Niu, C., & Hou, S. (2019). Influence of different vibration characteristic parameters on vibration response of apricot trees. Transactions of the Chinese Society of Agricultural Engineering, 35(2), 10-16. DOI: 10.11975/j.issn.1002-6819.2019.02.002

Zhou, J., He, L., Karkee, M., & Zhang, K. (2016). Effect of catching surface and tilt angle on bruise damage of sweet cherry due to mechanical impact. Computers and Eletronics in Agriculture, 121, 282-289. DOI: 10.1016/j.compag.2016.01.004

Publicado
2020-11-05
Como Citar
Rangel, J. P., Queiroz, D. M. de, Pinto, F. de A. de C., Teixeira, C. C., Santos, F. L., & Valente, D. S. M. (2020). Dynamic behavior of the macauba palm (Acrocomia aculeata) fruit-rachilla system using the stochastic finite element method. Acta Scientiarum. Agronomy, 43(1), e48565. https://doi.org/10.4025/actasciagron.v43i1.48565
Seção
Engenharia Agrícola

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus