Mathematical modeling and effect of thin-layer drying and lyophilization on antioxidant compounds from ultrasonic-assisted extracted Muntingia calabura peels

Palavras-chave: effective diffusion coefficient; lyophilized; bioactive compounds.

Resumo

Muntingia calabura fruits are rich in bioactive compounds such as antioxidants, and the consumption of these compounds is associated with cancer prevention and aging. In this study, mathematical models were used to fit the experimental data of the Muntingia calabura peel drying kinetics, and the effective diffusion coefficient, activation energy and thermodynamic properties of the process were determined. Then, the effect of the drying temperature on the antioxidant activity and phenolic compounds of fruit peels was examined using conventional extraction and ultrasonication. Among the analyzed models, the logarithmic model was selected to represent the drying phenomenon of the calabura peel kinetics. The effective diffusion coefficient decreased by 74% as the temperature increased from 40 to 60°C, and the activation energy for liquid diffusion during drying was 23.96 kJ mol-1. The enthalpy and entropy decreased with increasing temperature, while the Gibbs free energy increased by 5% for each 10°C increase in temperature. Regarding the content of phenolic compounds and the antioxidant activity of the calabura peel, it was observed that an increase in the drying temperature had a positive effect on the conservation of the bioactive compounds, making it possible to conclude that drying at 60°C and ultrasound extraction are the most suitable approach to conduct the process.

Downloads

Não há dados estatísticos.

Referências

Akpinar, E. K. (2006). Mathematical modelling of thin layer drying process under open sun of some aromatic plants. Journal of Food Engineering, 77(4), 864-870. DOI: 10.1016/j.jfoodeng.2005.08.014

Amiruddin, Z., Hijaz, M., Sani, M., Abdul, A., Lay, T., & Zaki, M. (2016). Antinociceptive effect of semi-purified petroleum ether partition of Muntingia calabura leaves. Revista Brasileira de Farmacognosia, 26(4), 408-419. DOI: 10.1016/j.bjp.2015.12.007

Aral, S., & Bese, A. V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry, 210, 577-584. DOI: 10.1016/j.foodchem.2016.04.128

Avhad, M. R., & Marchetti, J. M. (2016). Mathematical modelling of the drying kinetics of Hass avocado seeds. Industrial Crops and Products, 91, 76-87. DOI: 10.1016/j.indcrop.2016.06.035

Azeez, L., Adebisi, S. A., Oyedeji, A. O., Adetoro, R. O., & Tijani, K. O. (2019). Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. Journal of the Saudi Society of Agricultural Sciences, 18(2), 120-126. DOI: 10.1016/j.jssas.2017.03.002

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239(1), 70-76. DOI: 10.1006/abio.1996.0292

Buhian, W. P. C., Rubio, R. O., & Martin-Puzon, J. J. (2017). Chromatographic fingerprinting and free-radical scavenging activity of ethanol extracts of Muntingia calabura L. leaves and stems. Asian Pacific Journal of Tropical Biomedicine, 7(2), 139-143. DOI: 10.1016/j.apjtb.2016.11.016

Buhian, W. P. C., Rubio, R. O., Valle Jr., D. L., & Martin-Puzon, J. J. (2016). Bioactive metabolite profiles and antimicrobial activity of ethanolic extracts from Muntingia calabura L. leaves and stems. Asian Pacific journal of tropical biomedicine, 6(8), 682-685. DOI: 10.1016/j.apjtb.2016.06.006

Chen, Q., Bi, J., Wu, X., Yi, J., Zhou, L., & Zhou, Y. (2015). Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller ) slices dried by hot-air and short- and medium-wave infrared radiation. LWT - Food Science and Technology, 64(2), 759-766. DOI: 10.1016/j.lwt.2015.06.071

Darvishi, H., Asl, A. R., Ali Asghari, Azadbakht, M., Najafi, G., & Khodaei, J. (2014). Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences, 13(2), 130-138. DOI: 10.1016/J.JSSAS.2013.03.002

Fratianni, A., Niro, S., Messia, M. C., Cinquanta, L., Panfili, G., Albanese, D., & Di Matteo, M. (2017). Kinetics of carotenoids degradation and furosine formation in dried apricots (Prunus armeniaca L.). Food Research International, 99(Part 2), 862–867. DOI: 10.1016/j.foodres.2016.12.009

Galaz, P., Valdenegro, M., Ramírez, C., Nuñez, H., Almonacid, S., & Simpson, R. (2017). Effect of drum drying temperature on drying kinetic and polyphenol contents in pomegranate peel. Journal of Food Engineering, 208, 19-27. DOI: 10.1016/j.jfoodeng.2017.04.002

Gomathi, R., Anusuya, N., & Manian, S. (2013). A dietary antioxidant supplementation of Jamaican cherries (Muntingia calabura L.) attenuates inflammatory related disorders. Food Science and Biotechnology, 22(3), 787-794. DOI: 10.1007/s10068-013-0146-1

Hani, N. M., Torkamani, A. E., Zainul Abidin, S., Mahmood, W. A. K., & Juliano, P. (2017). The effects of ultrasound assisted extraction on antioxidative activity of polyphenolics obtained from Momordica charantia fruit using response surface approach. Food Bioscience, 17, 7-16. DOI: 10.1016/j.fbio.2016.11.002

Henderson, S. M. (1974). Progress in developing the thin layer drying equation. Transactions of the ASAE, 17(6), 1167-1168. DOI: 10.13031/2013.37052

Jideani, V. A., & Mpotokwana, S. M. (2009). Modeling of water absorption of Botswana bambara varieties using Peleg’s equation. Journal of Food Engineering, 92(2), 182-188. DOI: 10.1016/j.jfoodeng.2008.10.040

Junqueira, D. J., Luiz, J., & Corr, G. (2017). Convective drying of cape gooseberry fruits : Effect of pretreatments on kinetics and quality parameters. LWT - Food Science and Technology, 82, 404-410. DOI: 10.1016/j.lwt.2017.04.072

Kaleta, A., & Górnicki, K. (2010). Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. International Journal of Food Science & Technology, 45(5), 891-898. DOI: 10.1111/j.1365-2621.2010.02230.x

Kingsly, R. P., Goyal, R. K., Manikantan, M. R., & Ilyas, S. M. (2007). Effects of pretreatments and drying air temperature on drying behaviour of peach slice. International Journal of Food Science & Technology, 42(1), 65-69. DOI: 10.1111/j.1365-2621.2006.01210.x

Lalit, R., Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1), 296-301. DOI: 10.13031/2013.32245

Lewis, W. K. (1921). The rate of drying of solid materials. Journal of Industrial & Engineering Chemistry, 13(5), 427-432. DOI: 10.1021/ie50137a021

Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. DOI: 10.1016/0260-8774(95)00062-3

Méndez-Lagunas, L., Rodríguez-Ramírez, J., Cruz-Gracida, M., Sandoval-Torres, S., & Barriada-Bernal, G. (2017). Convective drying kinetics of strawberry (Fragaria ananassa): Effects on antioxidant activity, anthocyanins and total phenolic content. Food Chemistry, 230, 174-181. DOI: 10.1016/j.foodchem.2017.03.010

Mghazli, S., Ouhammou, M., Hidar, N., Lahnine, L., Idlimam, A., & Mahrouz, M. (2017). Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. Renewable Energy, 108, 303-310. DOI: 10.1016/j.renene.2017.02.022

Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503-1513. DOI: 10.1081/DRT-120005864

Morais, D. R., Rotta, E. M., Sargi, S. C., Schmidt, E. M., Bonafe, E. G., Eberlin, M. N., ... Visentainer, J. V. (2015). Antioxidant activity, phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Research International, 77(Part 3), 392-399. DOI: 10.1016/j.foodres.2015.08.036

Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. DOI: 10.1016/j.jfoodeng.2015.09.015

Nasir, N. L. Md., Kamsani, N. E., Mohtarrudin, N., Othman, F., Tohid, S. F. Md., & Zakaria, Z. A. (2017). Anticarcinogenic activity of Muntingia calabura leaves methanol extract against the azoxymethane-induced colon cancer in rats involved modulation of the colonic antioxidant system partly by flavonoids. Pharmaceutical Biology, 55(1), 2102-2109. DOI: 10.1080/13880209.2017.1371769

Oliveira, L. F., Nascimento, M. R. F., Borges, S. V., Ribeiro, P. C. N., & Ruback, V. R. (2002). Aproveitamento alternativo da casca do maracuja-amarelo (Passiflora edulis F. Flavicarpa) para produção de doce em calda. Food Science and Technology, 22(3), 259-262. DOI: 10.1590/S0101-20612002000300011

Page, G. E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers. Retrieved on Aug. 8, 2019 from https://docs.lib.purdue.edu/dissertations/AAI1300089

Roberts, J. S., Kidd, D. R., & Padilla-Zakour, O. (2008). Drying kinetics of grape seeds. Journal of Food Engineering, 89, 460-465. DOI: 10.1016/j.jfoodeng.2008.05.030

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Calixto, F. D. S. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Fortaleza, CE: Embrapa. (Comunicado Técnico, 127).

Sharaf-Eldeen, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 23(5), 1261-1265. DOI: 10.13031/2013.34757

Silva, V., Figueiredo, A. R., Costa, J. J., & Guiné, R. P. F. (2014). Experimental and mathematical study of the discontinuous drying kinetics of pears. Journal of Food Engineering, 134, 30-36. DOI: 10.1016/j.jfoodeng.2014.02.022

Singh, R. P., Chidambara Murthy, K. N., & Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86. DOI: 10.1021/jf010865b

Singleton, V. L.& Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.

Siqueira, E. M. A., Rosa, F. R., Fustinoni, A. M., Sant’Ana, L. P., & Arruda, S. F. (2013). Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional Red Delicious apple. PLoS ONE, 8(8), 1-7. DOI: 10.1371/journal.pone.0072826

Sridhar, M., Thirupathi, K., Chaitanya, G., Kumar, B. R., & Mohan, G. K. (2011). Antidiabetic effect of leaves of Muntingia calabura L., in normal and alloxan-induced diabetic rats. Pharmacologyonline, 2, 626-632.

Su, B. N., Jung Park, E., Vigo, J. S., Graham, J. G., Cabieses, F., Fong, H. H. S., ... Kinghorn, A. D. (2003). Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay. Phytochemistry, 63(3), 335-341. DOI: 10.1016/S0031-9422(03)00112-2

Sufian, A. S., Ramasamy, K., Ahmat, N., Zakaria, Z. A., & Yusof, M. I. M. (2013). Isolation and identification of antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L. Journal of Ethnopharmacology, 146(1), 198-204. DOI: 10.1016/j.jep.2012.12.032

Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying — A new model. Transactions of the ASAE, 11(4), 582-586. DOI: 10.13031/2013.39473

Vega-Galvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martinez-Monzo, J., Garcia-Segovia, P., ... Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132(1), 51-59. DOI: 10.1016/j.foodchem.2011.10.029

Workneh, T. S., & Oke, M. O. (2013). Thin layer modelling of microwave-convective drying of tomato slices. International Journal of Food Engineering, 9(1), 75–90. DOI: 10.1515/ijfe-2012-0205

Zielinska, M., & Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212, 671-680. DOI: 10.1016/j.foodchem.2016.06.003

Publicado
2021-03-18
Como Citar
Tavone, L. A. da S., Nascimento, K. M., Fachina, Y. J., Madrona, G. S., Bergamasco, R. de C., & Scapim, M. R. da S. (2021). Mathematical modeling and effect of thin-layer drying and lyophilization on antioxidant compounds from ultrasonic-assisted extracted Muntingia calabura peels. Acta Scientiarum. Agronomy, 43(1), e50301. https://doi.org/10.4025/actasciagron.v43i1.50301
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus