Area estimation of soybean leaves of different shapes with artificial neural networks

Palavras-chave: Glycine max; multilayer perceptrons; computational intelligence.

Resumo

Leaf area is one of the most commonly used physiological parameters in plant growth analysis because it facilitates the interpretation of factors associated with yield. The different leaf formats related to soybean genotypes can influence the quality of the model fit for the estimation of leaf area. Direct leaf area measurement is difficult and inaccurate, requires expensive equipment, and is labor intensive. This study developed methodologies to estimate soybean leaf area using neural networks and considering different leaf shapes. A field experiment was carried out from February to July 2017. Data were collected from thirty-six cultivars separated into three groups according to the leaf shape. Multilayer perceptrons were developed using 300 leaves per group, of which 70% were used for training and 30% for validation. The most important morphological measures were also tested with Garson’s method. The artificial neural networks were efficient in estimating the soybean leaf area, with coefficients of determination close to 0.90. The left leaflet width and right leaflet length are sufficient to estimate the leaf area. Network 4, trained with leaves from all groups, was the most general and suitable for the prediction of soybean leaf area.

Downloads

Não há dados estatísticos.

Referências

Ahmadian-Moghadam, H. (2012). Prediction of pepper (Capsicum annuum) leaf area using group method of data handling-type neural networks. International Journal of Agriscience, 2(11), 993-999.

Azevedo, A. M., Andrade Júnior, V. C., Sousa Júnior, A. S., Santos, A. A., Cruz, C. D.; Pereira, S. L., & Oliveira, A. J. M. (2017). Eficiência da estimação da área foliar de couve por meio de redes neurais artificiais. Horticultura Brasileira, 35(1), 14-19. DOI: https://doi.org/10.1590/S0102-053620170103

Bakhshandeh, E., Kamkar, B., & Tsialtas, J. T. (2011). Application of linear models for estimation of leaf area in soybean Glycine max (L.). Photosynthetica, 49(3), 405-416. DOI: https://doi.org/10.1007/S11099-011-0048-5

Bergmeir, C., & Benítez, M. J. (2012). Neural networks in R using the Stuttgart Neural Network Simulator: RSNNS. Journal of Statistical Software, 46(7), 1-26. DOI: https://doi.org/10.18637/jss.v046.i07

Fallovo, C., Cristofori, V., Gyves, E. M., Rivera, C. M., Rea, R., & Fanasca, S. (2008). Leaf area estimation model for small fruits from linear measurements. Horticultural Science, 43(7), 2263-2267. DOI: https://doi.org/10.21273/HORTSCI.43.7.2263

Fascella, G., Maggiore, P., Zizzo, G., Colla, G., & Rouphael, Y. (2009). A simple and low-cost method for leaf area measurement in Euphorbia x lomi Thai hybrids. Advances in Horticultural Science, 23(1), 57-60.

Garson, G. D. Interpreting neural-network connection weights. (1991). Journal AI Expert, 6(4), 47-51.

Giuffrida, F., Rouphael, Y., Toscano, S., Scuderi, D., Romano, D., Rivera., … G., Leonardi, C. (2011). A simple model for nondestructive leaf area estimation in bedding plants. Photosynthetica, 49(3), 380-388. DOI: https://doi.org/10.1007/s11099-011-0041-z

Guimarães, B. V., Donato, S. L., Azevedo, A. M., Aspiazú, I., & Silva Junior, A. A. S. (2018). Prediction of ‘Gigante’cactus pear yield by morphological characters and artificial neural networks. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), 315-319. DOI: https://doi.org/10.1590/18071929/agriambi.v22n5p315-319

Hosseini, M., McNairn, H., Merzouki, A., & Pacheco, A. (2015). Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C-and L-band radar data. Remote Sensing of Environment, 170, 77-89. DOI: https://doi.org/10.1016/j.rse.2015.09.002

Moosavi, A. A., & Sepaskhah, A. (2012). Artificial neural networks for predicting unsaturated soil hydraulic characteristics at different applied tensions. Archives of Agronomy and Soil Science, 58(2), 125-153. DOI: https://doi.org/10.1080/03650340.2010.512289

Odabas, M. S., Ergun, E., & Oner, F. (2013). Artificial neural network approach for the prediction of the corn (Zea mays L.) leaf area. Bulgarian Journal of Agricultural Science, 19(4), 766-769.

Oliveira, M. H. C., Sari, V., Castro, N. M. R, & Pedrollo, O. C. (2017). Estimation of soil water content in watershed using artificial neural networks. Hydrological Sciences Journal, 62(13), 2120–2138. DOI: https://doi.org/10.1080/02626667.2017.1364844

Padrón, R. A. R., Lopes, S. J., Swarowsky, A., Cerquera, R. R., Nogueira, C. U., & Maffei, M. (2016). Non-destructive models to estimate leaf area on bell pepper crop. Ciência Rural, 46(11), 1938-1944. DOI: https://doi.org/10.1590/0103-8478cr20151324

Paliwal, M., & Kumar, U. A. (2011). Assessing the contribution of variables in feed forward neural network. Applied Soft Computing, 11(4), 3690-3696. DOI: https://doi.org/10.1016/j.asoc.2011.01.040

Rad, M. R. N., Koohkan, S. H., Fanaei, H. R., & Rad, M. R. P. (2015). Application of artificial neural networks to predict the final fruit weight and random forest to select important variables in native population of melon (Cucumis melo L.). Scientia Horticulturae, 181(2), 108-112. DOI: https://doi.org/10.1016/j.scienta.2014.10.025

Richter, G. L., Zanon, A. J., Streck, N. A., Guedes, J. V. C, Kräulich, B., Rocha, T. S. M., Winck, J. E. M., & Cera, J. C. (2014). Estimating leaf area of modern soybean cultivars by a non-destructive method. Bragantia, 73(4), 416-425. DOI: https://doi.org/10.1590/1678-4499.0179

Shabani, A., Ghaffary, K. A., Sepaskhahc, A. R., & Kamgar-Haghighi, A. A. (2017). Using the artificial neural network to estimate leaf area. Scientia Horticulturae, 216(14), 103-110. DOI: https://doi.org/10.1016/j.scienta.2016.12.032

Silva, G. N., Tomaz, R. S., Sant’anna, I. C., Nascimento, M., Bhering, L. L., & Cruz, C.D. (2014). Neural networks for predicting breeding values and genetic gains. Scientia Agricola, 71(6), 494-498. DOI: https://doi.org/10.1590/0103-9016-2014-0057

Silva, S. H. M. G.; Lima, J. D.; Bendini, H. N.; Nomura, E. S.; Moraes, W. S. (2008). Estimativa da área foliar do antúrio com o uso de funções de regressão. Ciência Rural, 38(1), 243-246. DOI: https://doi.org/10.1590/S0103-84782008000100040

Soares, J. D. R., Pasqual, M., Lacerda, W. S., Silva, S. O., & Donato, S. L. R. (2013). Utilization of artificial neural networks in the prediction of the bunches’ weight in banana plants. Scientia Horticulturae, 155(29), 24-29. DOI: https://doi.org/10.1016/j.scienta.2013.01.026

Teobaldelli, M., Rouphael, Y., Fascella, G., Cristofori, V., Rivera, C. M., & Basile, B. (2019). Developing an accurate and fast non-destructive single leaf area model for Loquat (Eriobotrya japonica Lindl) cultivars. Plants, 8(7), 230. DOI: https://doi.org/10.3390/plants8070230

Toebe, M., Souza, R. R. D., Mello, A. C., Melo, P. J. D., Segatto, A., & Castanha, A. C. (2019). Leaf area estimation of squash ‘Brasileirinha’ by leaf dimensions. Ciência Rural, 49(4), 1-11. DOI: https://doi.org/10.1590/0103-8478cr20180932

Wang, Z., & Zhang, L. (2012). Leaf shape alters the coefficients of leaf area estimation models for Saussurea stoliczkai in central Tibet. Photosynthetica, 50(3), 337-342. DOI: https://doi.org/10.1007/s11099-012-0039-1

Publicado
2022-05-24
Como Citar
Sá, L. G. de, Albuquerque, C. J. B., Valadares, N. R., Brito, O. G., Mota, A. N., Fernandes, A. C. G., & Azevedo, A. M. (2022). Area estimation of soybean leaves of different shapes with artificial neural networks. Acta Scientiarum. Agronomy, 44(1), e54787. https://doi.org/10.4025/actasciagron.v44i1.54787
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus