Coexistence of target-site and non-target-site mechanisms of glyphosate resistance in Amaranthus palmeri populations from Argentina

  • Alvaro Santiago Larran Universidad Nacional de Rosario
  • Valeria Esther Palmieri Universidad Nacional de Rosario
  • Daniel Tuesca Universidad Nacional de Rosario
  • Hugo Raúl Permingeat Universidad Nacional de Rosario
  • Valeria Elisa Perotti Universidad Nacional de Rosario https://orcid.org/0000-0003-1147-9902
Palavras-chave: palmer amaranth; target-site resistance; EPSPS P106 substitution; EPSPS copy number; shikimate accumulation.

Resumo

Amaranthus palmeri S. Waston is currently one of the most problematic weeds worldwide. Biotypes with resistance to herbicides such as glyphosate and ALS inhibitors are now present in almost all Argentinian cultivable areas. In this work, we studied glyphosate resistance in three different populations, some of them previously characterized as resistant to ALS inhibitors. Dose-response curves were conducted in order to assess the effect of glyphosate on the survival and dry biomass of the populations. Subsequently, the presence of target-site resistance (TSR) was studied. Results confirmed the glyphosate resistance in the three populations, showing different levels of resistance, being R2 and R3 significantly more resistant than r1 population. A high prevalence of the P106S substitution was detected in the three resistant populations, while none increase in the relative EPSPS copy number was noticed. Some surviving plants without any of the TSR mechanisms for glyphosate were detected in R3 population, suggesting the presence of non-target-site resistance (NTSR).

Downloads

Não há dados estatísticos.

Referências

Chahal, P. S., Aulakh, J. S., Jugulam, M., & Jhala, A. J. (2015). Herbicide-resistant palmer amaranth (Amaranthus palmeri S. Wats.) in the United States-mechanisms of resistance, impact, and management. In A. Price (Ed.), Herbicides, agronomic crops and weed biology (p. 1-29). London, UK: InTech Open.

Chatham, L. A., Wu, C., Riggins, C. W., Hager, A. G., Young, B. G., Roskamp, G. K., & Tranel, P. J. (2015). EPSPS gene amplification is present in the majority of glyphosate-resistant Illinois waterhemp (Amaranthus tuberculatus) populations. Weed Technology, 29(1), 48-55. DOI: https://doi.org/10.1614/WT-D-14-00064.1

Cromartie, T. H., & Polge, N. D. (2000). An improved assay for shikimic acid and its use as a monitor for the activity of sulfosate. Proceedings of the Weed Science Society of America, 40, 291.

Cruz, R. A., Fernández-Moreno, P. T., Ozuna, C. V., Rojano-Delgado, A. M., Cruz-Hipolito, H. E., Domínguez-Valenzuela, J. A., … Prado, R. (2016). Target and non-target site mechanisms developed by glyphosate-resistant hairy beggarticks (Bidens pilosa L.) populations from Mexico. Frontiers in Plant Science, 7, 1492. DOI: https://doi.org/10.3389/fpls.2016.01492

Domínguez-Valenzuela, J. A., Gherekhloo, J., Fernández-Moreno, P. T., Cruz-Hipolito, H. E., Cruz, R. A., Sánchez-González, E., & Prado, R. (2017). First confirmation and characterization of target and non-target site resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) from Mexico. Plant Physiology and Biochemistry, 115, 212-218. DOI: https://doi.org/10.1016/j.plaphy.2017.03.022

Gaines, T. A., Patterson, E. L., & Neve, P. (2019). Molecular mechanisms of adaptive evolution revealed by global selection for glyphosate resistance. New Phytologist, 223(4), 1770-1775. DOI: https://doi.org/10.1111/nph.15858

Gaines, T. A., Zhang, W., Wang, D., Bukun, B., Chisholm, S. T., Shaner, D. L., … Westra, P. (2010). Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1029-1034. DOI: https://doi.org/10.1073/pnas.0906649107

García, M. J., Palma-Bautista, C., Rojano-Delgado, A. M., Bracamonte, E., Portugal, J., Cruz, R. A., & Prado, R. (2019). The triple amino acid substitution TAP-IVS in the EPSPS gene confers high glyphosate resistance to the superweed Amaranthus hybridus. International Journal of Molecular Sciences, 20(10), 2396. DOI: https://doi.org/10.3390/ijms20102396

Goggin, D. E., Cawthray, G. R., & Powles, S. B. (2016). 2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport. Journal of Experimental Botany, 67(11), 3223-3235. DOI: https://doi.org/10.1093/jxb/erw120

Heap, I. (1999). International survey of herbicide-resistant weeds: lessons and limitations. Corvallis, OR: British Crop Protection Council Farnham UK.

Heap, I., & Duke, S. O. (2018). Overview of glyphosate-resistant weeds worldwide. Pest Management Science, 74(5), 1040-1049. DOI: https://doi.org/10.1002/ps.4760

Kaundun, S. S., Jackson, L. V., Hutchings, S.-J., Galloway, J., Marchegiani, E., Howell, A., … Moreno, R. (2019). Evolution of target-site resistance to glyphosate in an Amaranthus palmeri population from Argentina and its expression at different plant growth temperatures. Plants, 8(11), 512. DOI: https://doi.org/10.3390/plants8110512

Koo, D.-H., Molin, W. T., Saski, C. A., Jiang, J., Putta, K., Jugulam, M., … Gill, B. S. (2018). Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proceedings of the National Academy of Sciences of the United States of America, 115(13), 3332-3337. DOI: https://doi.org/10.1073/pnas.1719354115

Larran, A. S., Palmieri, V. E., Perotti, V. E., Lieber, L., Tuesca, D., & Permingeat, H. R. (2017). Target-site resistance to acetolactate synthase (ALS)-inhibiting herbicides in Amaranthus palmeri from Argentina. Pest Management Science, 73(12), 2578-2584. DOI: https://doi.org/10.1002/ps.4662

Li, J., Peng, Q., Han, H., Nyporko, A., Kulynych, T., Yu, Q., & Powles, S. (2018). Glyphosate resistance in Tridax procumbens via a novel EPSPS Thr-102-Ser substitution. Journal of Agricultural and Food Chemistry, 66(30), 7880-7888. DOI: https://doi.org/10.1021/acs.jafc.8b01651

Moretti, M. L., Van Horn, C. R., Robertson, R. R., Segobye, K., Weller, S. C., Young, B. G., … Schulz, B. (2018). Glyphosate resistance in Ambrosia trifida: Part 2. Rapid response physiology and non-target-site resistance. Pest Management Science, 74(5), 1079-1088. DOI: https://doi.org/10.1002/ps.4569

Morichetti, S., Cantero, J. J., Núñez, C., Barboza, G. E., Amuchastegui, A., & Ferrell, J. (2013). Sobre la presencia de Amaranthus palmeri (Amaranthaceae) en Argentina. Boletín de la Sociedad Argentina de Botánica, 48(2), 347-354. DOI: https://doi.org/10.31055/1851.2372.v48.n2.6269

Nol, N., Tsikou, D., Eid, M., Livieratos, I. C., & Giannopolitis, C. N. (2012). Shikimate leaf disc assay for early detection of glyphosate resistance in Conyza canadensis and relative transcript levels of EPSPS and ABC transporter genes. Weed Research, 52(3), 233-241. DOI: https://doi.org/10.1111/j.1365-3180.2012.00911.x

Owen, M. D. K. (2016). Diverse approaches to herbicide-resistant weed management. Weed Science, 64(S1), 570-584. DOI: https://doi.org/10.1614/WS-D-15-00117.1

Palma-Bautista, C., Torra, J., García, M. J., Bracamonte, E., Rojano-Delgado, A. M., Cruz, R. A., & Prado, R. (2019). Reduced absorption and impaired translocation endows glyphosate resistance in Amaranthus palmeri harvested in glyphosate-resistant soybean from Argentina. Journal of Agricultural and Food Chemistry, 67(4), 1052-1060. DOI: https://doi.org/10.1021/acs.jafc.8b06105

Peng, Y., Abercrombie, L. L. G., Yuan, J. S., Riggins, C. W., Sammons, R. D., Tranel, P. J., & Stewart Jr, C. N. (2010). Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest Management Science, 66(10), 1053-1062. DOI: https://doi.org/10.1002/ps.2004

Perotti, V. E., Larran, A. S., Palmieri, V. E., Martinatto, A. K., Alvarez, C. E., Tuesca, D., & Permingeat, H. R. (2019). A novel triple amino acid substitution in the EPSPS found in a high-level glyphosate-resistant Amaranthus hybridus population from Argentina. Pest Management Science, 75(5), 1242-1251. DOI: https://doi.org/10.1002/ps.5303

Perotti, V. E., Larran, A. S., Palmieri, V. E., Martinatto, A. K., & Permingeat, H. R. (2020). Herbicide resistant weeds: a call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Science, 290, 110255. DOI: https://doi.org/10.1016/j.plantsci.2019.110255

Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36. DOI: https://doi.org/10.1093/nar/30.9.e36

REM. (2018). Red de conocimiento de malezas resistentes. Retrieved from https://www.aapresid.org.ar/rem-malezas/mapa-malezas/#tipo_mapa=abundancia_maleza&maleza%5B%5D=amaranthus-sp-rg

Sammons, R. D., & Gaines, T. A. (2014). Glyphosate resistance: state of knowledge. Pest Management Science, 70(9), 1367-1377. DOI: https://doi.org/10.1002/ps.3743

Shaner, D. L., & Beckie, H. J. (2014). The future for weed control and technology. Pest Management Science, 70(9), 1329-1339. DOI: https://doi.org/10.1002/ps.3706

Shaner, D. L., Nadler-Hassar, T., Henry, W. B., & Koger, C. H. (2005). A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Science, 53(6), 769-774. DOI: https://doi.org/10.1614/WS-05-009R.1

Takano, H. K., Fernandes, V. N. A., Adegas, F. S., Oliveira Jr., R. S., Westra, P., Gaines, T. A., & Dayan, F. E. (2020). A novel TIPT double mutation in EPSPS conferring glyphosate resistance in tetraploid Bidens subalternans. Pest Management Science, 76(1), 95-102. DOI: https://doi.org/10.1002/ps.5535

Van Horn, C. R., Moretti, M. L., Robertson, R. R., Segobye, K., Weller, S. C., Young, B. G., … Gaines, T. A., (2018). Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate. Pest Management Science, 74(5), 1071-1078. DOI: https://doi.org/10.1002/ps.4567

Vila-Aiub, M. M., Goh, S. S., Gaines, T. A., Han, H., Busi, R., Yu, Q., & Powles, S. B. (2014). No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri. Planta, 239(4), 793-801. DOI: https://doi.org/10.1007/s00425-013-2022-x

Vila-Aiub, M. M., Yu, Q., & Powles, S. B. (2019). Do plants pay a fitness cost to be resistant to glyphosate? New Phytologist, 223(2), 532-547. DOI: https://doi.org/10.1111/nph.15733

Ward, S. M., Webster, T. M., & Steckel, L. E. (2013). Palmer amaranth (Amaranthus palmeri): a review. Weed Technology, 27(1), 12-27. DOI: https://doi.org/10.1614/WT-D-12-00113.1

Yu, Q., Jalaludin, A., Han, H., Chen, M., Sammons, R. D., & Powles, S. B. (2015). Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance. Plant Physiology, 167(4), 1440-1447. DOI: https://doi.org/10.1104/pp.15.00146

Yuan, J. S., Abercrombie, L. L. G., Cao, Y., Halfhill, M. D., Zhou, X., Peng, Y., … Stewart Jr., C. N. (2010). Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non–target-site glyphosate resistance. Weed Science, 58(2), 109-117. DOI: https://doi.org/10.1614/WS-D-09-00037.1

Publicado
2021-12-21
Como Citar
Larran, A. S., Palmieri, V. E., Tuesca, D., Permingeat, H. R., & Perotti, V. E. (2021). Coexistence of target-site and non-target-site mechanisms of glyphosate resistance in Amaranthus palmeri populations from Argentina. Acta Scientiarum. Agronomy, 44(1), e55183. https://doi.org/10.4025/actasciagron.v44i1.55183
Seção
Fitossanidade

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus