An approach of using different curing temperature based on potato cv. Innovator periderm differentiation, sugar metabolism, and industrial quality
Resumo
Excoriation damage is among the major causes of postharvest potato losses. Curing is known to increase the resistance of tubers to excoriation injury, with the temperature influencing the traumatic phellogen and periderm regeneration, as well as tuber processing quality. This study aimed to evaluate the effects of excoriation procedure and curing temperature on the industrial quality, histological characteristics, carbohydrate metabolism, and oxidative enzyme activity of potato tuber. Tubers with or without excoriation were cured at 8, 14, and 20°C for 15 days. Excoriation did not influence the levels of reducing sugars (RS), as well as polyphenoloxidase (PPO) and peroxidase (POD) activities. The concentrations of total soluble sugars (TSS) and non-reducing sugars (NRS) were higher in injured tubers, while reduction in curing temperature increased the concentrations of TSS, NRS, and RS. However, the sugar content was adequate as per the criteria of the pre-fried potato industry and potatoes classified in category 2 (USDA/fast-food industry color grading). The reduction in curing temperature also increased the activity of POD, despite the activity of PPO remaining unchanged. Formation of a closure layer from the outer parenchyma cells of the tuber that prevents desiccation and death of superficial cells, was observed. This protection was completed with the formation of the damage periderm. Periderm regeneration is faster at higher temperatures, 15 and 20°C, leading to a lower fresh mass loss and no enzymatic or non-enzymatic browning. The excoriation carried out at 14/20oC for 15 days was sufficient for curing, and for maintaining suitable post-fry quality of potatoes.
Downloads
Referências
Barbosa, M. R., Silva, M. M. A., Willadino, L., Ulisses, C., & Camara, T. R. (2014). Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural, 44(3), 453-460. DOI: https://doi.org/10.1590/S0103-84782014000300011
Bernards, M. A., & Razem, F. (2001). The poly(phenolic) domain of potato suberin: a non-lignin cell wall biopolymer. Phytochemistry, 57(7),1115-1122. DOI: https://doi.org/10.1016/S0031-9422(01)00046-2
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye biding. Analytical Biochemistry, 72(1-2), 248-254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
Brundrett, M. C., Kendrick, B., & Peterson, C. A. (1991). Efficient lipid staining in plant material with sudan red 7B, fluoral yellow 088 in polyethylene glycol-glycerol. Biotechnic & Histochemistry, 66(3), 111-116. DOI: https://doi.org/10.3109/10520299109110562
Chapper, M., Bacarin, M. A., Pereira, A. S., & Terrible, L. C. (2002). Carboidratos não estruturais em tubérculos de dois genótipos de batata armazenados em duas temperaturas. Horticultura Brasileira, 20(4),583-588. DOI: https://doi.org/10.1590/S0102-05362002000400014
Chen, X., Song, B., Liu, J., Yang, J., He, T., Lin, Y., … Xie, C. (2012). Modulation of gene expression in cold-induced sweetening resistant potato species Solanum berthaultii exposed to low temperature. Molecular Genetics and Genomics, 287(5), 411-421. DOI: https://doi.org/10.1007/s00438-012-0688-6
Company-Arumí, D., Figueras, M., Salvadó, V., Molinas, M., Serra, O., & Anticó, E. (2016). The identification and quantification of suberin monomers of root and tuber periderm from potato (Solanum tuberosum) as fatty acyl tert-butyldimethylsilyl derivatives. Phytochemical Analysis, 27(6), 326-335. DOI: https://doi.org/10.1002/pca.2625
Costa, C. C., Guilhoto, J. J. M., & Burnquist, H. L. (2015). Impactos socioeconômicos de reduções nas perdas pós-colheita de produtos agrícolas no brasil. Revista de Economia e Sociologia Rural, 53(3), 395-408. DOI: http://dx.doi.org/10.1590/1234-56781806-9479005303002
Daniels-Lake, B., Prange, R., Walsh, J., Hiltz, K., Bishop, S., & Munro-Pennell, K. (2014). Effects of simulated harvest injury and relative humidity during the first week post-harvest on potato (Solanum tuberosum L.) tuber weight loss during subsequent storage. Journal of Horticultural Science & Biotechnology, 89(2), 167-172. DOI: http://dx.doi.org/10.1080/14620316.2014.11513064
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3),350-356.
Gao, Y., Geng, J., Rao, X., & Ying, Y. (2016). CCD-Based skinning injury recognition on potato tubers (Solanum tuberosum L.): A comparison between visible and biospeckle imaging. Sensors, 16(10),1-13. DOI: http://dx.doi.org/10.3390/s16101734
Gonçalves, C., Rodrigues-Jassom, M. R., Gomes, N., Teixeira, J. Á., & Belo, I. (2010). Adaptation of dinitrosalicylic acid method to microtiter plates. Analytical Methods, 2(10), 2046-2048. DOI: https://doi.org/10.1039/C0AY00525H
Hu, J., Baker, A., Bartel, B., Linka, N., Mullen, R. T., Reumann, S., & Zolmanh, B. K. (2012). Plant peroxisomes: Biogenesis and function. The Plant Cell, 24(6),2279-2303. DOI: https://doi.org/10.1105/tpc.112.096586
Jin, L., Cai, Q., Huang, W., Dastmalchi, K., Rigau, J., Molinas, M., … Stark, R. E. (2018). Potato native and wound periderms are differently affected by downregulation of FHT, a suberin feruloyl transferase. Phytochemistry, 147,30-48. DOI: https://doi.org/10.1016/j.phytochem.2017.12.011
Johansen, D. A. (1940). Plant microtechnique. New York, NY: McGraw-Hill Books.
Johnson, T. L., & Olsen, L. J. (2001). Building New Models for Peroxisome Biogenesis. Plant Physiology, 127(3), 731-739. DOI: https://doi.org/10.1104/pp.010262
Kavrayan, D., & Aydemir, T. (2001). Partial purification and characterization of polyphenoloxidase from peppermint (Mentha piperita). Food Chemistry, 74(2),146-154. DOI: https://doi.org/10.1016/S0308-8146(01)00106-6
Kirk, J. R.P. W. (1970). Neutral red as a lipid fluorochrome. Stain Technology, 45(1), 1-4. DOI: https://doi.org/10.3109/10520297009063373
Lagrimini, L. M., Gingas, V., Finger, F. L., Rothstein, S., & Liu, T. T. Y. (1997). Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase. Plant Physiology, 114(4),1187-1196. DOI: https://doi.org/10.1104/pp.114.4.1187
Lulai, E. C., & Suttle, J. C. (2009). Signals involved in tuber wound-healing. Plant Signaling & Behavior, 4(7), 620-622. DOI: http://dx.doi.org/10.4161/psb.4.7.8922
Lulai, E. C. (2007). Skin-set, wound healing, and related defects. Fargo, ND: USDA-ARS, Northern Crop Science Laboratory, 1307 18 Street N.
Lulai, E. C., Campbell, L. G., Fugate, K. K., & Mccue, K. F. (2016). Biological differences that distinguish the 2 major stages of wound healing in potato tubers. Plant Signaling & Behavior, 11(12), 1-7. DOI: http://dx.doi.org/10.1080/15592324.2016.1256531
Nissen, M. S., Kumar, M. G. N., Youn, B., Knowles, B. D., Sumlam, K., Ballinger, J. W., … Kanga, C. (2009). Characterization of Solanum tuberosum multicystatin and its structural comparison with other cystatins. The Plant Cell, 21(3),861-875. DOI: https://doi.org/10.1105/tpc.108.064717
O’brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue. Protoplasma, 59(2),368-373. DOI: https://doi.org/10.1007/BF01248568
Pereira, A. M., Picoli, E. A. T., Gomes, M. P., Petrucci, K. P. O. S., Bhering, A. S., Cruz, R. R. P., ... Finger, F. L. (2020). Regeration of the damage periderm of potato tuber as a resulto f the temperatura of curing. Research, Society and Development, 9(9), 1-12. DOI: http://dx.doi.org/10.33448/rsd
Pouvreau, L., Gruppen, H., Piersma, S., Van Den, B. L., Van Koningsveld, G., & Voragen, A. (2001). Relative abundance and inhibitory distribution of protease inhibitors in potato juice from cv. Elkana. Journal of Agricultural and Food Chemistry, 49(6),2864-2874. DOI: https://doi.org/10.1021/jf010126v
Ruzin, S. E. (1999). Plant microtechnique and microscopy. New York, NY: Oxford University Press.
Sabba, R. P., & Lulai, E. C. (2004). Immunocytological comparison of native and wound periderm maturation in potato tuber. American Journal of Potato Research, 81,119-124. DOI: https://doi.org/10.1007/BF02853609
Sabba, R. P., & Lulai, E. C. (2005). Immunocytological analysis of potato tuber periderm and changes in pectin and extensin epitopes associated with periderm maturation. Journal of the American Society for Horticultural Science, 130(6),936-942.
Sistema para análises estatísticas [SAEG]. (2007). Versão 9.1 (Fundação Arthur Bernardes). Viçosa, MG: UFV.
Schreiber, L., Franke, R., & Hartmann, K. (2005). Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta, 220(4), 520–530. DOI: https://doi.org/10.1007/s00425-004-1364-9
Stark, J. C., Olsen, N., Kleink, O. P., Ge, F., & Love, S. L. (2003). Tuber quality. In J. C. Stark, & S. L. Love (Eds.), Potato production systems (p. 329-343). Moscow, ID: University of Idaho.
Stitt, M., & Hurry, V. A. (2002). Plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology, 5(3), 199–206. DOI: https://doi.org/10.1016/S1369-5266(02)00258-3
U.S. Department of Agriculture [USDA]. (1967). United States standards for grades of frozen french fried potatoes. Washington, DC: USDA.
Vidal, B. C. (1970). Dichroism in collagen bundles stained with xylidine-Ponceau 2R. Annales d´Histochimie, 15(4), 289-296.
Wang, Q., Cao, Y., Zhou, L., Jiang, C. Z., Feng, Y., & Wei, S. (2015). Effects of postharvest curing treatment on flesh colour and phenolic metabolism in fresh-cut potato products. Food Chemistry, 169, 246-254. DOI: http://dx.doi.org/10.1016/j.foodchem.2014.08.011
Wiberley-Bradford, A. E., Busseb J. S., & Bethke, P. C. (2016). Temperature-dependent regulation of sugar metabolism in wild-type and low-invertase transgenic chipping potatoes during and after cooling for low-temperature storage. Postharvest Biology and Technology, 115, 60-71. DOI: https://doi.org/10.1016/j.postharvbio.2015.12.020
Zommick, D. H., Knowles, L. O., Knowles, N. R. (2014). Tuber respiratory profiles during low temperature sweetening (LTS) and reconditioning of LTS-resistant and susceptible potato (Solanum tuberosum L.) cultivars. Postharvest Biology and Technology, 92,128-138. http://dx.doi.org/10.1016/j.postharvbio.2014.01.020.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.