Pyruvate supplementation in cotton under water restriction varying the phenological phases

Palavras-chave: Gossypium hirsutum L.; hydric restriction; gas exchange; antioxidant enzymes.

Resumo

Cotton is one of the largest agricultural commodities that generate various sources of foreign exchange and employment worldwide. However, water deficiency is an environmental factor that limits the production of this crop, especially in semi-arid regions. We evaluated pyruvate supplementation to mitigate the effects of water stress on colored cotton. Experiments were conducted in a greenhouse. We studied two forms of pyruvate supplementation (SP1- via seed and foliar and SP2- only via foliar); three conditions of irrigation management of the plants: water restriction in the vegetative phase (VE), flowering (FL), and vegetative and flowering (VE/FL); and additional treatment (total irrigation throughout the crop cycle and without pyruvate supplementation). The experimental design included a randomized block in a 2 × 3 + 1 factorial scheme. The factors resulted in seven treatments with three replications, with a total of 21 experimental units. Gas exchange, enzyme activity, and production of components were evaluated. Water restriction in the vegetative phase does not cause losses in BRS Jade cotton when supplemented with pyruvate. However, in the flowering and vegetative phases plus flowering, it reduces gas exchange and production components and increases the activity of antioxidant enzymes in relation to plants under full irrigation. Supplementation with pyruvate via seed plus foliar (SP1) was better for BRS Jade cotton grown under water restriction.

Downloads

Não há dados estatísticos.

Referências

Almeida, E. S. A. B., Pereira, J. R., Azevedo, C. A. V., Araújo, W. P., Zonta, J. H., & Cordão, M. A. (2017). Algodoeiro herbáceo submetido a déficit hídrico: Produção. Agropecuária Científica no Semiárido, 13(1), 22-28.

Azevedo, R. A., Alas, R. M., Smith, R. J., & Lea, P. J. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, 104(2), 280-292. DOI: https://doi.org/10.1034/j.1399-3054.1998.1040217.x

Barbosa, D. D., Fernandes, P. D., Marcelino, A. D. A. L., Silva, F. A., Dias, M. S. Silva, C. R. C., & Santos, R. C. (2021). Exogenous pyruvate mitigates the detrimental effects of water stress in contrasting peanut genotypes. Genetics and Molecular Research, 20(3), 1-14. DOI: https://doi.org/10.4238/gmr18907

Barbosa, J. L., Nobre, R. G., Souza, L. D. P., Veloso, L. L. D. S., Silva, E. L. D., & Guedes, M. A. (2019). Crescimento de algodoeiro colorido cv. BRS Topázio em solos com distintas salinidades e adubação orgânica. Revista de Ciências Agrárias, 42(1), 201-210. DOI: https://doi.org/10.19084/RCA17294

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. DOI: https://doi.org/0.1006/abio.1976.9999

Bulbovas, P., Rinaldi, M., Delitti, W. B., & Domingos, M. (2005). Seasonal variation in antioxidants in leaves of young plants of Caesalpinia echinata Lam. (Pau-Brasil). Brazilian Journal of Botany, 28(4), 687-696. DOI: https://doi.org/10.1590/S0100-84042005000400004

Carmo-Silva, A. E., Gore, M. A., Andrade-Sanchez, P., French, A. N., Hunsaker, D. J., & Salvucci, M. E. (2012). Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, 83, 1-11. DOI: https://doi.org/10.1016/j.envexpbot.2012.04.001

Cordão, M. A., Araújo, W. P., Pereira, J. R., Zonta, J. H., & Ferreira, F. N. (2018). Cultivares de algodoeiro herbáceo sob déficit hídrico aplicado em fases fenológicas. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13(3), 313-321. DOI: https://dx.doi.org/10.18378/rvads.v13i3.5933

Dutra, W. F., Melo, A. S., Suassuna, J. F., Dutra, A. F., Silva-Chagas, D., & Maia, J, M. (2017). Antioxidative responses of cowpea cultivars to water deficit and salicylic acid treatment. Agronomy Journal, 109(3), 895-905. DOI: https://doi.org/10.2134/agronj2015.0519

Ennahli, S., & Earl, H. J. (2005). Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science, 45(6), 2374-2382. DOI: https://doi.org/10.2135/cropsci2005.0147

Farahani, H. J., Oweis, T. Y., & Izzi, G. (2008). Crop coefficient for drip-irrigated cotton in a Mediterranean environment. Irrigation Science, 26(5), 375-383. DOI: https://hdl.handle.net/20.500.11766/7814

Ferreira, D. F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. DOI: https://doi.org/10.28951/rbb.v37i4.450

Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134-142. DOI: https://doi.org/10.1016/j.envexpbot.2018.05.003

Gama, J. S. N., Júnior, L. R. P., Pereira, F. J. S., Oliveira, E. L., Campos, D. A., & Barros, A. C. S. A. (2017). Efeito da adubação silicatada na qualidade da fibra do algodoeiro. Magistra, 28(2), 244-253.

Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96(9), 1275-1284. DOI: https://doi.org/10.1016/j.agwat.2009.04.009

Hake, K. D., & Grimes, G. W. (2010). Crop water management to optimize growth and yield. In J. Mc. D. Stewart, D. Oosterhuis, J. J. Heithold, & J. R. Mauney (Eds.), Physiology of cotton (p. 255-264). Heidelberg, GE: Springer-Verlag.

Kerbauy, G. B. (2008). Fisiologia vegetal (2. ed.). Rio de Janeiro, RJ: Guanabara Koogan.

Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51(47), 1-17. DOI: https://doi.org/10.1186/s40659-018-0198-z

Lima, R. F., Araújo, W. P., Pereira, J. R., Cordão, M. A., Ferreira, F. N., & Zonta, J. H. (2018). Fibras de algodoeiro herbáceo sob déficit hídrico. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 13(4), 427-436. DOI: http://dx.doi.org/10.18378/rvads.v13i4.5940

Loka, D. A., & Oosterhuis, D. M. (2014). Water-deficit stress effects on pistil biochemistry and leaf physiology in cotton (Gossypium hirsutum, L.). South African Journal of Botany, 93, 131-136. DOI: https://doi.org/10.1016/j.sajb.2014.03.019

Luo, H. H., Zhang, Y. L., & Zhang, W. F. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54(1), 65-73. DOI: https://doi.org/10.1007/s11099-015-0165-7

Maniçoba, R. M., Sobrinho, J. E., Zonta, J. H., Junior, E. G. C., Oliveira, A. K. S., & Silva Freitas, I. A. (2021). Resposta do algodoeiro à supressão hídrica em diferentes fases fenológicas no semiárido brasileiro. Irriga, 26(1), 123-133. DOI: https://doi.org/10.15809/irriga.2021v26n1p123-133

Meward, A. R. M. A., Desoky, E. S. M., & Rady, M. M. (2018). Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae, 228, 132-144. DOI: https://doi.org/10.1016/j.scienta.2017.10.008

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232

Novais, R. F., Neves, J. C. L., & Barros N. F. (1991). Ensaio em ambiente controlado. In A. J. Oliveira (Ed.), Métodos de pesquisa em fertilidade do solo (p. 189-253). Brasília, DF: Embrapa-SEA.

Pereira, J. W. L, Silva, E. C. A., Luz, L. N., Nogueira, R. J. M. C., Melo Filho, P. D. A., Lima, L. M., & Santos, R. C. (2015). Cluster analysis to select peanut drought tolerance lines. Australian Journal of Crop Science, 9(11), 1095-1105.

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26. DOI: https://doi.org/10.1155/2012/217037

Shen, J. L., Li, C. L., Wang, M., He, L. L., Lin, M. Y., Chen, D. H., & Zhang, W. (2017). Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana. BMC Plant Biology, 17(1), 217. DOI: https://doi.org/10.1186/s12870-017-1175-3

Silva, A. C. D., Suassuna, J. F., Melo, A. S. D., Costa, R. R., Andrade, W. L. D., & Silva, D. C. D. (2017). Salicylic acid as attenuator of drought stress on germination and initial development of sesame. Brazilian Journal of Agricultural and Environmental Engineering, 21(3), 156-162. DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n3p156-162

Snowden, C., Ritchie, G., Cave, J., Keeling, W., & Rajan, N. (2013). Multiple irrigation levels affect boll distribution, yield, and fiber micronaire in cotton. Agronomy Journal, 105(6), 1536-1544. DOI: https://doi.org/10.2134/agronj2013.0084

Snowden, M. C., Ritchie, G. L., Simao, F. R., & Bordovsky, J. P. (2014). Timing of episodic drought can be critical in cotton. Agronomy Journal, 106(2), 452-458. DOI: https://doi.org/10.2134/agronj2013.0325

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6. ed.). Porto Alegre, RS: Artmed.

Teixeira, P. C., Donagemma, G. K., Fontana, D., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3. ed.). Brasília, DF: Embrapa Solos.

Ul-Allah, S., Rehman, A., Hussain, M., & Farooq, M. (2021). Fiber yield and quality in cotton under drought: Effects and management. Agricultural Water Management, 255, 1-6. DOI: https://doi.org/10.1016/j.agwat.2021.106994

Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898. DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x

Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., ... Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11), 1-9. DOI: https://doi.org/10.1242/bio.035279

Yeates, S. (2014). Efeitos do estresse hídrico na fisiologia do algodoeiro. In F. R. Echer (Ed.), O algodoeiro e os estresses abióticos: temperatura, luz, água e nutrientes (p. 63-79). Cuiabá, MT: Instituto Mato-Grossense do Algodão.

Yi, X. P., Zhang, Y. L., Yao, H. S., Luo, H. H., Gou, L., Chow, W. S., & Zhang, W. F. (2016). Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23-34. DOI: https://doi.org/10.1016/j.jplph.2016.01.016

Zonta, J. H., Brandão, Z. N., Rodrigues, J. I. S., & Sofiatti, V. (2017). Cotton response to water deficits at different growth stages. Caatinga, 30(4), 980-990. DOI: https://doi.org/10.1590/1983-21252017v30n419rc

Zwart, S. J., & Bastiaanssen, W. G. (2004). Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 69(2), 115-133. DOI: https://doi.org/10.1016/j.agwat.2004.04.007

Publicado
2023-08-23
Como Citar
Dias, M. dos S., Fernandes , P. D., Silva, F. de A. da, Marcelino, A. D. A. de L., Barbosa, D. D., Santos, R. C. dos, Reis, L. S., & Lima, V. L. A. de. (2023). Pyruvate supplementation in cotton under water restriction varying the phenological phases . Acta Scientiarum. Agronomy, 45(1), e61973. https://doi.org/10.4025/actasciagron.v45i1.61973
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus