Relative expression of genes related to volatile organic compounds in non-climacteric and climacteric melons
Resumo
Melon (Cucumis melo L.) is an important species in the cucurbit family with a large economic importance in the world. Two melon cultivars commercially important in Brazil are ‘Yellow’ and ‘Gaúcho’. In addition to their economic importance, these two cultivars display phenotypic differences in aroma, a major trait determining fruit quality. Volatile organic compounds (VOCs) impart the different aroma found in this fruit and their biosynthesis is associated with fatty acid and amino acid metabolism. Using RT-qPCR techniques, the expression of seven genes (CmLOX9, CmLOX18, CmBCAT1, CmArAT1, CmPDC1, CmADH1, and CmAAT1) was determined during ripening. The lipid pathway played a strong role in determining aroma composition in non-climacteric ‘Yellow’ melons. Most volatiles decreased during ripening, explaining the non-aromatic characteristic of this cultivar. In climacteric ‘Gaúcho’ melons, the amino acid pathway was the main one related to the biosynthesis of esters, which contribute to the aroma of this cultivar. Volatile products of the branched-chain amino acid pathway correlated with CmADH1 and CmAAT1 expression, demonstrating their role in volatile synthesis in this climacteric melon cultivar. In addition, CmPDC1 contributes to the formation of aldehydes at the beginning of this pathway.
Downloads
Referências
Andreou, A., & Feussner, I. (2009). Lipoxygenases – Structure and reaction mechanism. Phytochemistry, 70(13-14), 1504-1510. DOI: https://doi.org/10.1016/j.phytochem.2009.05.008
Ayub, R., Guis, M., Bem Amor, M., Gillot, L., Roustan, J.-P., Latché, A., ... Pech, J.-C. (1996). Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotechnology, 14(7), 862-866. DOI: https://doi.org/10.1038/nbt0796-862
Bissacotti, A. P., & Londero, P. M. G. (2017). Catálogo de sementes crioulas: Resgate e valorização da agrobiodiversidade para garantir a segurança alimentar. Disciplinarum Scientia, 18(2), 381-387. DOI: https://doi.org/10.37777/2361
Burger, Y., Sa’ar, U., Paris, H., Lewinsohn, E., Katzir, N., Tadmor, Y., & Schaffer, A. (2006). Genetic variability for valuable fruit quality traits in Cucumis melo. Israel Journal of Plant Sciences, 54(3), 233-242. DOI: https://doi.org/10.1560/ijps_54_3_233
Campos, G. S., Ayub, R. A., Etto, R. M., Galvão, C. W., Stroka, M. A., & Inaba, J. (2017). High-quality total RNA isolation from melon (Cucumis melo L.) fruits rich in polysaccharides. Semina: Ciências Agrárias, 38(4), 2201-2207. DOI: https://doi.org/10.5433/1679-0359.2017v38n4p2201
Chen, H., Cao, S., Jin, Y., Tang, Y., & Qi, H. (2016). The relationship between CmADHs and the diversity of volatile organic compounds of three aroma types of melon (Cucumis melo). Frontiers in Physiology, 7(254), 1-12. DOI: https://doi.org/10.3389/fphys.2016.00254
El-Sharkawy, I., Manríquez, D., Flores, F. B., Regad, F., Bouzayen, M., Latché, A., & Pech, J.-C. (2005). Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity. Plant Molecular Biology, 59(2), 345-362. DOI: https://doi.org/10.1007/s11103-005-8884-y
Ezura, H., & Owino, W. O. (2008). Melon, an alternative model plant for elucidating fruit ripening. Plant Science, 175(1–2), 121-129. DOI: https://doi.org/10.1016/j.plantsci.2008.02.004
FAO. (2018). FAOSTAT: Statistical database. Rome, IT: Food and Agriculture Organization of the United Nations.
Flores, F., El Yahyaoui, F., Billerbeck, G., Romojaro, F., Latché, A., Bouzayen, M., ... Ambid, C. (2002). Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatiles in Charentais Cantaloupe melons. Journal of Experimental Botany, 53(367), 201-206. DOI: https://doi.org/10.1093/jexbot/53.367.201
Gonda, I., Bar, E., Portnoy, V., Lev, S., Burger, J., Schaffer, A. A., ... Lewinsohn, E. (2010). Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. Journal of Experimental Botany, 61(4), 1111-1123. DOI: https://doi.org/10.1093/jxb/erp390
Gonda, I., Burger, Y., Schaffer, A. A., Ibdah, M., Tadmor, Y., Katzir, N., Fait, A., & Lewinsohn, E. (2016). Biosynthesis and perception of melon aroma. In D. Havkin-Frenkel, & N. Dudai (Eds.), Biotechnology in flavor production (2nd ed., p. 281-305). New York, NY: John Wiley & Sons, Ltd. DOI: https://doi.org/10.1002/9781118354056.ch11
Instituto Brasileiro de Geografia e Estatística [IBGE]. (2018). Pesquisa pecuária municipal. Rio de Janeiro, RJ: IBGE.
Jin, Y., Zhang, C., Liu, W., Tang, Y., Qi, H., Chen, H., & Cao, S. (2016). The alcohol dehydrogenase gene family in melon (Cucumis melo L.): Bioinformatic analysis and expression patterns. Frontiers in Plant Science, 7(670). 1-18. DOI: https://doi.org/10.3389/fpls.2016.00670
Kong, Q., Yuan, J., Gao, L., Zhao, S., Jiang, W., Huang, Y., & Bie, Z. (2014). Identification of suitable reference genes for gene expression normalization in RT-qPCR analysis in watermelon. PLoS ONE, 9(2), 1-11. DOI: https://doi.org/10.1371/journal.pone.0090612
Lee, E.-J., & Facchini, P. J. (2011). Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Physiology, 157(3), 1067–1078. DOI: https://doi.org/10.1104/pp.111.185512
Li, Y., Qi, H., Jin, Y., Tian, X., Sui, L., & Qiu, Y. (2016). Role of ethylene in the biosynthetic pathway of related-aroma volatiles derived from fatty acids in Oriental sweet melon. Journal of the American Society for Horticultural Science, 141(4), 327-338. DOI: https://doi.org/10.21273/jashs.141.4.327
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402-408. DOI: https://doi.org/10.1006/meth.2001.1262
Manríquez, D., El-Sharkawy, I., Flores, F. B., El-Yahyaoui, F., Regad, F., Bouzayen, M., ... Pech, J.-C. (2006). Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics. Plant Molecular Biology, 61(4–5), 675-685. DOI: https://doi.org/10.1007/s11103-006-0040-9
McLellan, M. R., Lind, L. R., & Kime, R. W. (1995). Hue angle determinations and statistical analysis for multiquadrant Hunter L,a,b data. Journal of Food Quality, 18(3), 235–240. DOI: https://doi.org/10.1111/j.1745-4557.1995.tb00377.x
McMurchie, E. J., McGlasson, W. B., & Eaks, I. L. (1972). Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature, 237(5352), 235-236. DOI: https://doi.org/10.1038/237235a0.
Moyano, E., Encinas-Villarejo, S., López-Ráez, J. A., Redondo-Nevado, J., Blanco-Portales, R., Bellido, M. L., ... Muñoz-Blanco, J. (2004). Comparative study between two strawberry pyruvate decarboxylase genes along fruit development and ripening, post-harvest and stress conditions. Plant Science, 166(4), 835-845. DOI: https://doi.org/10.1016/j.plantsci.2003.09.025
Obando-Ulloa, J. M., Moreno, E., García-Mas, J., Nicolai, B., Lammertyn, J., Monforte, A. J., & Fernández-Trujillo, J. P. (2008). Climacteric or non-climacteric behavior in melon fruit. Postharvest Biology and Technology, 49(1), 27–37. DOI: https://doi.org/10.1016/j.postharvbio.2007.11.004
Paris, H. S., Tadmor, Y., & Schaffer, A. A. (2017). Cucurbitaceae melons, squash, cucumber. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.), Encyclopedia of applied plant sciences (v. 3, 2nd ed., p. 209-217). Amsterdam, NT: Elsevier. DOI: https://doi.org/10.1016/b978-0-12-394807-6.00063-0
Pech, J.-C., Bouzayen, M., & Latché, A. (2008). Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science, 175(1–2), 114-120. DOI: https://doi.org/10.1016/j.plantsci.2008.01.003
Peng, B., Xu, J., Cai, Z., Zhang, B., Yu, M., & Ma, R. (2020). Different roles of the five alcohol acyltransferases in peach fruit aroma development. Journal of the American Society for Horticultural Science, 145(6), 374-381. DOI: https://doi.org/10.21273/jashs04951-20
Pitrat, M., Hanelt, P., & Hammer, K. (2000). Some comments on infraspecific classification of cultivars of melon. Acta Horticulturae, 510(4), 29-36. DOI: https://doi.org/10.17660/actahortic.2000.510.4
Portnoy, V., Benyamini, Y., Bar, E., Harel-Beja, R., Gepstein, S., Giovannoni, J. J., & Katzir, N. (2008). The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Molecular Biology, 66(6), 647-661. DOI: https://doi.org/10.1007/s11103-008-9296-6
Pott, D. M., Osorio, S., & Vallarino, J. G. (2019). From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Frontiers in Plant Science, 10(835), 1-19. DOI: https://doi.org/10.3389/fpls.2019.00835
R Core Team. (2010). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on May 10, 2022 from https://www.r-project.org/
Saladié, M., Cañizares, J., Phillips, M. A., Rodriguez-Concepcion, M., Larrigaudière, C., Gibon, Y., ... Garcia-Mas, J. (2015). Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics, 16(440),1-20. DOI: https://doi.org/10.1186/s12864-015-1649-3
Schemberger, M. O., Stroka, M. A., Reis, L., Souza Los, K. K., Araujo, G. A. T., Sfeir, M. Z. T., ... Ayub, R. A. (2020). Transcriptome profiling of non-climacteric “yellow” melon during ripening: Insights on sugar metabolism. BMC Genomics, 21(262), 1-20. DOI: https://doi.org/10.1186/s12864-020-6667-0
Schwab, W., Davidovich-Rikanati, R., & Lewinsohn, E. (2008). Biosynthesis of plant-derived flavor compounds. The Plant Journal, 54(4), 712-732. DOI: https://doi.org/10.1111/j.1365-313x.2008.03446.x
Shalit, M., Katzir, N., Tadmor, Y., Larkov, O., Burger, Y., Shalekhet, F., ... Lewinsohn, E. (2001). Acetyl-CoA: Alcohol acetyltransferase activity and aroma formation in ripening melon fruits. Journal of Agricultural and Food Chemistry, 49(2), 794-799. DOI: https://doi.org/10.1021/jf001075p
Spadafora, N. D., Cocetta, G., Cavaiuolo, M., Bulgari, R., Dhorajiwala, R., Ferrante, A., ... Müller, C. T. (2019). A complex interaction between pre-harvest and post-harvest factors determines fresh-cut melon quality and aroma. Scientific Reports, 9(2745), 1-15. DOI: https://doi.org/10.1038/s41598-019-39196-0
Sugimoto, N., Daniel Jones, A., & Beaudry, R. (2011). Changes in free amino acid content in “Jonagold” apple fruit as related to branched-chain ester production, ripening, and senescence. Journal of the American Society for Horticultural Science, 136(6), 429-440. DOI: https://doi.org/10.21273/jashs.136.6.429
Tang, Y., Zhang, C., Cao, S., Wang, X., & Qi, H. (2015). The effect of CmLOXs on the production of volatile organic compounds in four aroma types of melon (Cucumis melo). PLoS ONE, 10(11), 1-18. DOI: https://doi.org/10.1371/journal.pone.0143567
Vincenti, S., Mariani, M., Alberti, J.-C., Jacopini, S., Brunini-Bronzini de Caraffa, V., Berti, L., & Maury, J. (2019). Biocatalytic synthesis of natural green leaf volatiles using the lipoxygenase metabolic pathway. Catalysts, 9(873), 1-35. DOI: https://doi.org/10.3390/catal9100873
Wang, M., Zhang, L., Boo, K. H., Park, E., Drakakaki, G., & Zakharov, F. (2019). PDC1, a pyruvate/α‐ketoacid decarboxylase, is involved in acetaldehyde, propanal and pentanal biosynthesis in melon (Cucumis melo L.) fruit. The Plant Journal, 98(1), 112-125. DOI: https://doi.org/10.1111/tpj.14204
White, P. J. (2002). Recent advances in fruit development and ripening: An overview. Journal of Experimental Botany, 53(377), 1995-2000. DOI: https://doi.org/10.1093/jxb/erf105
Zhang, B., Shen, J., Wei, W., Xi, W., Xu, C., Ferguson, I. T., & Chen, K. (2010). Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening. Journal of Agricultural and Food Chemistry, 58(10), 6157-6165. DOI: https://doi.org/10.1021/jf100172e
Zhu, X., Song, Z., Li, Q., Li, J., Chen, W., & Li, X. (2020). Physiological and transcriptomic analysis reveals the roles of 1-MCP in the ripening and fruit aroma quality of banana fruit (Fenjiao). Food Research International, 130, 108968. DOI: https://doi.org/10.1016/j.foodres.2019.108968
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.