Pineapple growth and development modeling based on nitrogen rate and planting density

Palavras-chave: Ananas comosus var; comosus; pineapple; crop simulation model; harvest prediction.

Resumo

Plant growth models, derived from reliable databases, enable development of software for recommending cultural practices, harvest predictions, and enhancing productivity. This study aimed to create, refine, and simulate reference models for pineapple growth and development, adapting them based on nitrogen supply per plant and plant density per hectare. We utilized a field test database with periodic assessments of root, stem, leaf, fruit, and stem diameter fresh and dry weight, along with climate data from meteorological stations in or near the experimental areas. These growth models were developed, considering significant correlations and high correlation coefficients, using both simple non-destructive (stem diameter) and destructive (fresh or dry weight of D leaf) plant evaluations, either separately or in combination. The resulting models can provide estimated predictions for pineapple growth, adaptable to varying plant populations and nitrogen fertilization rates (measured in grams of N per plant)

Downloads

Não há dados estatísticos.

Referências

Amaral, U., Maia, V. M., Pegoraro, R. F., Kondo, M. K., Santos, S. R., Loss, A., ... Cessa, R. M. A. (2021). Teor de carbono em diferentes compartimentos do abacaxizeiro. Holos, 3, 1-11. DOI: https://doi.org/10.15628/holos.2020.9916

Amaral, U., Maia, V. M., Pegoraro, R. F., Kondo, M. K., & Aspiazú, I. (2014). Water dephts and macronutrients accumulation in 'Pérola' pineapple irrigated by drip. Revista Brasileira de Fruticultura, 36(3), 755-760. DOI: https://doi.org/10.1590/0100-2945-187/13

Archontoulis, S. V., & Miguez, F. E. (2015). Nonlinear regression models and applications in agricultural research. Agronomy Journal, 107(2), 786-798. DOI: https://doi.org/10.2134/agronj2012.0506

Cardoso, M. M., Pegoraro, R. F., Maia, V. M., Kondo, M. K., & Fernandes, L. A. (2013). Crescimento do abacaxizeiro 'Vitória' irrigado sob diferentes densidades populacionais, fontes e doses de nitrogênio. Revista Brasileira de Fruticultura, 35(3), 769-781. DOI: https://doi.org/10.1590/S0100-29452013000300014

Fournier, P., Dubois, C., Benneveau, A., & Soler, A. (2010). Growth indicators for different pineapple cultivars compared with the current standard ‘Smooth Cayenne’ in west Africa and reunion Island: A first step toward modeling growth. Agronomy Journal, 102(6), 1572-1577. DOI: https://doi.org/10.2134/agronj2010.0130

Graciano, E. S. A., Nogueira, R. J. M. C., Lima, D. R. M., Pacheco, C. M., & Santos, R. C. (2011). Crescimento e capacidade fotossintética da cultivar de amendoim BR 1 sob condições de salinidade. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(8), 794-800. DOI: https://doi.org/10.1590/S1415-43662011000800005

Hanafi, M. M. Selamat, M. M., Husni, M. H. A., & Adzemi, M. A. (2009). Dry matter and nutrient partitioning of selected pineapple cultivars grown on mineral and tropical peat soils. Communications in Soil Science and Plant Analysis, 40(21-22), 3263-3280. DOI: https://doi.org/10.1080/00103620903335983

Hunt, R. (1990). Basic growth analysis: plant growth analysis for beginners. London, UK: Unwim Hyman.

Maia, V. M., Oliveira, F. S., Pegoraro, R. F., Aspiazú, I., & Pereira, M. C. T. (2016a). ‘Pérola’ pineapple growth under semiarid climate conditions. Acta Horticulturae, 1111, 267-274. DOI: https://doi.org/10.17660/ActaHortic.2016.1111.38

Maia, V. M., Oliveira, F. S., Pegoraro, R. F., Souza, B. A. M., Ferreira, L. B., & Aspiazú, I. (2016b). Vegetative growth stages of irrigated `Pérola’ pineapple. Acta Horticulturae, 1111, 275-280. DOI: https://doi.org/10.17660/ActaHortic.2016.1111.39

Malézieux, E., Zhang, J., Sinclair E. R., & Bartholomew, D. P. (1994). Predicting pineapple harvest date in different environments, using a computer simulation model. Agronomy Journal, 86(4), 609-617. DOI: https://doi.org/10.2134/agronj1994.00021962008600040006x

Mota, M. F. C., Pegoraro, R. F., Maia, V. M., Sampaio, R. A., Kondo, M. K. & Santos, S. R. (2021). Can sewage sludge increase soil fertility and replace inorganic fertilizers for pineapple production? Research, Society and Development, 10(11), 1-14. DOI: https://doi.org/10.33448/rsd-v10i11.19310

Mota, M. F., Pegoraro, R. F., Santos, S. R. D., Maia, V. M., Sampaio, R. A., & Kondo, M. K. (2018). Contamination of soil and pineapple fruits under fertilization with sewage sludge. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), 320-325. DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n5p320-325

Oliveira, F. S., Maia, V. M., Santos, M. P., Pegoraro, R. F., Santos, S. R., & Kondo, M. K. (2022). Yield and quality of pineapple fertigated with treated wastewater. Fruits, 77(1), 1-10. DOI: https://doi.org/10.17660/th2022/003

Pegoraro, R. F., Souza, B. A. M., Maia, V. M., Amaral, U., & Pereira, M. C. T. (2014a). Growth and production of irrigated ‘Vitória’ pineapple grown in semi-arid conditions. Revista Brasileira de Fruticultura, 36(3), 693-703. DOI: https://doi.org/10.1590/0100-2945-265/13

Pegoraro, R. F., Souza, B. A. M., Maia, V. M., Silva, D. F., Medeiros, A. C., & Sampaio, R. A. (2014b). Macronutrient uptake, accumulation and export by the irrigated 'Vitória' pineapple plant. Revista Brasileira de Ciência do Solo, 38(3), 896-904. DOI: https://doi.org/10.1590/S0100-06832014000300021

Rodrigues, A. A., Mendonça, R. M. N., Silva, A. P., Silva, S. M., & Pereira, W. E. (2010). Desenvolvimento vegetativo de abacaxizeiros ‘Pérola’ e ‘Smooth Cayenne’ no Estado da Paraíba. Revista Brasileira de Fruticultura, 32(1), 126-134. DOI: https://doi.org/10.1590/S0100-29452010005000031

Santos, M. P. D., Maia, V. M., Oliveira, F. S., Pegoraro, R. F., Santos, S. R. D., & Aspiazú, I. (2018). Estimation of total leaf area and D leaf area of pineapple from biometric characteristics. Revista Brasileira de Fruticultura, 40(6), 1-4. DOI: https://doi.org/10.1590/0100-29452018556

Silva, P. O., Mesquita, F. G. F., Vilela, G. B., Pegoraro, R. F., Maia, V. M., & Kondo, M. K. (2022). Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression. Comunicata Scientiae, 13, 1-5. DOI: https://doi.org/10.14295/cs.v13.3719

Soltani, A., & Sinclair, T. R. (2012). Modeling physiology of crop development, growth and yield. London, UK: CAB Internacional.

Souza, R. P. D., Pegoraro, R. F., Reis, S. T., Maia, V. M., & Sampaio, R. A. (2019). Partition and macronutrients accumulation in pineapple under nitrogen doses and plant density. Comunicata Scientiae, 10(3), 384-395. DOI: https://doi.org/10.14295/cs.v10i3.2604

Souza, C. B., Silva, B. B., & Azevedo, P. V. (2007). Crescimento e rendimento do abacaxizeiro nas condições climáticas dos tabuleiros costeiros do estado da Paraíba. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(2), 134-141. DOI: https://doi.org/10.1590/S1415-43662007000200002

Vilela, G. B., Pegoraro, R. F., & Maia, V. M. (2015). Predição de produção do abacaxizeiro “Vitória” por meio de características fitotécnicas e nutricionais. Revista Ciência Agronômica, 46(4), 724-732. DOI: https://doi.org/10.5935/1806-6690.20150059

Publicado
2024-08-09
Como Citar
Silva, P. P. O. da, Maia, V. M., Pegoraro, R. F., & Oliveira, F. (2024). Pineapple growth and development modeling based on nitrogen rate and planting density. Acta Scientiarum. Agronomy, 46(1), e67824. https://doi.org/10.4025/actasciagron.v46i1.67824
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus