Estimation of optimal plot size for chickpea experiments using Bayesian approach with prior information

Palavras-chave: Cicer arietinum; agricultural experimentation; legume; Bayes’ theorem.

Resumo

Heterogeneity among experimental units can introduce experimental errors, necessitating the use of techniques that enhance statistical inferences to address this issue. One effective approach is determining the optimal plot size, which can reduce experimental error. While frequentist methods are commonly employed for this purpose, Bayesian approaches offer distinct advantages. Therefore, our objective was to estimate the optimal plot size for chickpea experiments using the Bayesian approach and compare the results with those from the frequentist approach. We conducted two control experiments (with no treatments) involving eight cultivation rows, each spanning seven meters in length, with 50 cm spacing between rows and 10 cm spacing between plants. We evaluated the central six rows, totaling 60 plants per cultivation row. At the end of the growth cycle, we assessed seed count, seed weight, harvest index, and shoot dry mass. Data collection was conducted at the individual plant level. We determined the optimal number of plots using both the frequentist approach (modified maximum curvature method) and Bayesian approach, employing informative and uninformative prior distributions. The optimal plot size varied depending on the specific experiments and the variables under analysis. However, there was consensus in the estimation of the optimal experimental plot size between the two approaches. We recommend using 15 plants as the optimal plot size for chickpea cultivation.

Downloads

Não há dados estatísticos.

Referências

Almeida Neta, M. N., Pegoraro, R. F., Sampaio, R. A., Costa, C. A., Fernandes, L. A., & Ferreira, J. M. (2020). Does inoculation with Rhizobium tropici and nitrogen fertilization increase chickpea production? Ciência e Agrotecnologia, 44, 1-13. DOI: https://doi.org/10.1590/1413-7054202044016520

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrif, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507

Avelar, R. I. S., Costa, C. A., Brandão Júnior, D. S., Paraíso, H. A., & Nascimento, W. M. (2018). Production and quality of chickpea seeds in different sowing and harvest periods. Journal of Seed Science, 40(2), 146-155. DOI: https://doi.org/10.1590/2317-1545v40n2185719

Azevedo, A. M., Andrade Júnior, V. C., Santos, A. A., Sousa Júnior, A. S., Oliveira, A. J. M., & Ferreira, M. A. M. (2017). Population parameters and selection of kale genotypes using Bayesian inference in a multi-trait linear model. Acta Scientiarum. Agronomy, 39(1), 25-31. DOI: https://doi.org/10.4025/actasciagron.v39i1.30856

Azevedo, A. M., Silva, D. J. H., Seus, R., Freitas, E. M., Afonso, D. F., Gomes, C. L., & Aspiazu, I. (2021). Determination of the optimal number of evaluations in half-sib progenies of kale by Bayesian approach. Horticultura Brasileira, 39(1), 20-25. DOI: https://doi.org/10.1590/s0102-0536-20210103

Bayoumi, T. Y., & El-Demardash, I. S. (2008). Effect of Water Deficit on Soil Variability, Plot size, Shape and Number of Replications for Chickpea. Bulletin of the National Research Centre, 33(6), 589-603.

Bidyarani, N., Prasanna, R., Babu, S., Hossain, F., & Saxena, A. K. (2016). Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiological Research, 188-189, 97-105. DOI: https://doi.org/10.1016/j.micres.2016.04.005

Carvalho, D. T., Beijo, L. A, & Muniz, J. A. (2017). Uma abordagem Bayesiana para modelar a isoterma de Langmuir. Revista Brasileira de Biometria, 35(2), 376-401.

Euzébio, M. P., Fonseca, I. C. B., Fonseca Júnior, N. S., Nascimento, M., Giordani, W., & Gonçalves, L. S. A. (2018). Adaptability and stability assessment of bean cultivars of the carioca commercial group by a Bayesian approach. Acta Scientiarum. Agronomy, 40(1), 1-8. DOI: https://doi.org/10.4025/actasciagron.v40i1.35272

Food and Agriculture Organization of the United Nation [FAO]. (2017). Food and agriculture organization, fao statistical year book. Retrieved on Dec. 5, 2019 from http://faostat.fao.org/site/291/default.aspx

Guimarães, B. V. C., Donato, S. L. R., Aspiazú, I., Azevedo, A. M., & Carvalho, A. J. (2019). Size of plots for experiments with cactus pear cv. Gigante. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(5), 347-351. DOI: https://doi.org/10.1590/1807-1929/agriambi.v23n5p347-351

Hoskem, B. C. S., Costa, C. A., Nascimento, W. M., Santos, L. D. T., Mendes, R. B., & Menezes, J. B. C. (2017). Productivity and quality of chickpea seeds in Northern Minas Gerais, Brazil. Revista Brasileira de Ciências Agrárias, 12(3), 261-268. DOI: https://doi.org/10.5039/agraria.v12i3a5445

Khaitov, B., & Abdiev, A. (2018). Performance of chickpea (Cicer arietinum L.) to bio-fertilizer and nitrogen application in arid condition. Journal of Plant Nutrition, 41(5), 1980-1987. DOI: https://doi.org/10.1080/01904167.2018.1484134

Lessman, K. J., & Atkins, R. E. (1963). Optimum plot size and relative efficiency of lattice designs for grain sorghum yield tests. Crop Science, 3(6), 477-481. DOI: https://doi.org/10.2135/cropsci1963.0011183X000300060006x

Lorentz, L. H., & Lúcio, A. D. (2009). Tamanho e forma de parcela para pimentão em estufa plástica. Ciência Rural, 39(8), 2380-2387. DOI: https://doi.org/10.1590/S0103-84782009005000202

Lúcio, A. D., Haesbaert, F. M., Santos, D., & Benz, V. (2011). Estimativa do tamanho de parcela para experimentos com alface. Horticultura Brasileira, 29(4), 510-515. DOI: https://doi.org/10.1590/S0102-05362011000400011

Magalhães, J. R., Azevedo, A. M., Valadares, N. R., Fernandes, A. C. G., Alves, R. A., Freitas, I. C., ... Costa, C. A. (2023). Optimum plot size and number of replications for experiments with the chickpea. Ciência Agronômica, 54, 1-10. DOI: http://doi.org/10.5935/1806-6690.20230032

Martins Filho, S., Silva, F. F., Carneiro, A. P. S., & Muniz, J. A. (2008). Abordagem Bayesiana das curvas de crescimento de duas cultivares de feijoeiro. Ciência Rural, 38(6), 1516-1521. DOI: https://doi.org/10.1590/S0103-84782008000600004

Meier, V. D., & Lessman, K. J. (1971). Estimation of optimum field plot shape and size testing yield in Crambe abyssinica hochst. Crop Science, 11(5), 648-650. DOI: https://doi.org/10.2135/cropsci1971.0011183X001100050013x

Nascimento, M., Silva, F. F., Sáfadi, T., Nascimento, A. C. C., Ferreira, R. P., & Cruz, C. D. (2011). Abordagem bayesiana para avaliação da adaptabilidade e estabilidade de genótipos de alfafa. Pesquisa Agropecuária Brasileira, 46(1), 26-32. DOI: https://doi.org/10.1590/S0100-204X2011000100004

Nascimento, W. M., Silva, P. P., Artiaga, O. P., & Suinaga, F. A. (2016). Grão-de-bico. In W. M. Nascimento (Ed.), Hortaliças Leguminosas (p. 89-118). Brasília, DF: Embrapa.

Oliveira, S. J. R., Storck, L., Lúcio, A. D., Lopes, S. L., & Martini, L. F. D. (2006). Índice de heterogeneidade, coeficiente de variação e tamanho ótimo de parcela em batata. Ciência Rural, 36(6), 1710-1716. DOI: https://doi.org/10.1590/S0103-84782006000600007

Plummer, M. (2019). rjags: Bayesian Graphical Models using MCMC. R package (version 4-10). Retrieved on Dec. 10, 2022 from https://cran.r-project.org/package=rjags

R Core Team (2019). R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. Retrieved on Dec. 10, 2022 from https://www.R-project.org/

Santos, D., Haesbaert, F. M., Lúcio, A. D., Storck, L., & Cargnelutti Filho, A. (2012). Tamanho ótimo de parcela para a cultura do feijão-vagem. Ciência Agronômica, 43(1), 119-128. DOI: https://doi.org/10.1590/S1806-66902012000100015

Schmildt, E. R., Schmildt, O., Cruz, C. D., Cattaneo, L. F., & Ferreguetti, G. A. (2016). Optimum plot size and number of replications in papaya field experiment. Revista Brasileira de Fruticultura, 38(2), 1-9. DOI: https://doi.org/10.1590/0100-29452016373

Storck, L., Garcia, D. C., Lopes, S. J., & Estefanel, V. (2011). Experimentação vegetal (3. ed.). Santa Maria, RS: UFSM.

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3. ed.). Brasília, DF: Embrapa.

Teodoro, P. E., Nascimento, M., Torres, F. E., Barroso, L. M. A., & Sagrilo, E. (2015). Perspectiva bayesiana na seleção de genótipos de feijão: caupi em ensaios de valor de cultivo e uso. Pesquisa Agropecuária Brasileira, 50(10), 878-885. DOI: https://doi.org/10.1590/S0100-204X2015001000003

Valadares, N. R., Fernandes, A. C. G., Rodrigues, C. H. O., Brito, O. G., Gomes, L. S. P., Magalhães, J. R., ... Azevedo, A. M. (2022). Bayesian approach to estimate genetic parameters and selection of sweet potato half-sib progenies. Scientia Horticulturae, 294, 1-8. DOI: https://doi.org/10.1016/j.scienta.2021.110759

Zimmermann, F. J. P. (2014). Estatística aplicada à pesquisa agrícola (2. ed.). Brasília, DF: Embrapa.

Publicado
2024-11-07
Como Citar
Magalhães, J. R., Valadares, N. R., Alves, R. A., Fernandes, A. C. G., Vieira , I. T. do R., Rodrigues, C. H. O., Athayde, A. L. M., & Azevedo, A. M. (2024). Estimation of optimal plot size for chickpea experiments using Bayesian approach with prior information. Acta Scientiarum. Agronomy, 47(1), e69264. https://doi.org/10.4025/actasciagron.v47i1.69264
Seção
Biometria, Modelagem e Estatística

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus