Low-density marker panels for genomic prediction in Coffea arabica L.
Resumo
Developing new cultivars, particularly in perennial species like Coffea arabica, can be a time-consuming process. Employing molecular markers in genome-wide selection (GWS) for predicting genetic values offers an alternative to accelerate this process. However, implementing GWS typically involves genotyping many markers for both training and candidate individuals, which can increase the total genotyping cost for the breeding program. Therefore, this study aimed to assess the feasibility of using low-density marker panels to predict the genetic merit of C. arabica for a range of desirable agronomic traits. For this purpose, GWS analyses were performed using the G-BLUP method with panels of varying marker densities, selected based on marker effect magnitude. The results indicate that employing lower-density panels might be advantageous for this species' improvement. Models based on these panels yielded accurate predictions for various traits and demonstrated high agreement in terms of selected individuals compared to more complex models.
Downloads
Referências
Aliloo, H., Mrode, R., Okeyo, A. M., Ni, G., Goddard, M. E., & Gibson, J. P. (2018). The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa. Journal of Dairy Science, 101(10), 9108-9127. DOI: https://doi.org/10.3168/jds.2018-14621
Alkimim, E. R., Caixeta, E. T., Sousa, T. V., Pereira, A. A., Oliveira, A. C. B., Zambolim, L., & Sakiyama, N. S. (2017). Marker-assisted selection provides arabica coffee with genes from other Coffea species targeting on multiple resistance to rust and coffee berry disease. Molecular Breeding, 37(6), 1-10. DOI: https://doi.org/10.1007/s11032-016-0609-1
Caixeta, E. T., Pestana, K. N., & Pestana, R. K. N. (2015). Melhoramento do cafeeiro: ênfase na aplicação dos marcadores moleculares. In G. O. Garcia, E. F. Reis, J. S. Lima, A. C. Xavier, & W. N. Rodrigues (Orgs.), Tópicos especiais em produção vegetal V. Alegre, ES: CAUFES.
Carvalho, C. H. S. (2008). Cultivares de Café: origem, características e recomendações. Brasília, DF: Embrapa Café.
Goddard, M. E., & Hayes, B. J. (2007). Genomic selection. Journal of Animal Breeding and Genetics, 124(6), 323-330. DOI: https://doi.org/10.1111/j.1439-0388.2007.00702.x
Habier, D., Fernando, R. L., & Dekkers, J. C. M. (2009). Genomic selection using-low density marker panels. Genetics, 182(1), 343-353. DOI: https://doi.org/10.1534/genetics.108.100289
International Coffee Organization [ICO]. (2023). Coffee Report and Outlook (CRO). Retrieved on Sep. 10, 2023 https://icocoffee.org/documents/cy2022-23/
Kriaridou, C., Tsairidou, S., Houston, R. D., & Robledo, D. (2020). Genomic prediction using low density marker panels in aquaculture: performance across species, traits, and genotyping platforms. Frontiers in Genetics, 11(124), 1-8. DOI: https://doi.org/10.3389/fgene.2020.00124
Landis, J., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. DOI: https://doi.org/10.2307/2529310
Ma, Y., Reif, J. C., Jiang, Y., Wen, Z., Wang, D., Liu, Z., … Qiu, L. (2016). Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Molecular Breeding, 36(113), 1-10. DOI: https://doi.org/10.1007/s11032-016-0504-9
Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome wide dense marker maps. Genetics, 157(4), 1819-1829. DOI: https://doi.org/10.1093/genetics/157.4.1819
Partelli, F. L., Covre, A. M., Oliveira, M. G., Alexandre, R. S., Vitória, E. L., & Silva, M.B. (2014). Root system distribution and yield of ‘Conilon’ coffee propagated by seeds or cuttings. Pesquisa Agropecuária Brasileira, 49(5), 349-355. DOI: https://doi.org/10.1590/S0100-204X2014000500004
Resende, M. D. V. (2016). Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330-339. DOI: https://doi.org/10.1590/1984-70332016v16n4a49
Resende, M. D. V., Silva, F. F., Lopes, O. S., & Azevedo, C. F. (2012). Seleção Genômica Ampla (GWS) via Modelos Mistos (REML/BLUP), Inferência Bayesiana (MCMC), Regressão Aleatória Multivariada e Estatística Espacial. Viçosa, MG: Departamento de Estatística/UFV.
Santana, L. S., Silva Ferraz, G. A., Teodoro, A. J. S., Santana, M. S., Rossi, G., & Palchetti, E. (2021). Advances in precision coffee growing research: A bibliometric review. Agronomy, 11(8), 1-16. DOI: https://doi.org/10.3390/agronomy11081557
Sousa, T. V., Caixeta, E. T. C., Alkimim, E. R., Oliveira, A. C. B., Pereira, A. A., Sakiyama, N. S., ... Resende, M. D. V. (2019a). Early selection enable by the implementation of genomic selection in Coffea arabica Breeding. Frontiers in Plant Science, 9(1934), 1-12. DOI: https://doi.org/10.3389/fpls.2018.01934
Sousa, M. B., Galli, G., Lyra, D. H., Granato, I. S. C., Matias, F. I., Alves, F. C., & Fritsche-Neto, R. (2019b). Increasing accuracy and reducing costs of genomic prediction by marker selection. Euphytica, 215(18), 215-218. DOI: https://doi.org/10.1007/s10681-019-2339-z
Vidal, R. O., Mondego, J. M. C., Pot, D., Ambrósio, A. B., Andrade, A. C., Pereira, L. F. P., … Pereira, G. A. G. (2010). A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica. Plant Physiology, 154(3), 1053-1066. DOI: https://doi.org/10.1104/pp.110.162438
Vitezica, Z. G., Varona, L., & Legarra, A. (2013). On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics, 195(4), 1223-1230. DOI: https://doi.org/10.1534/genetics.113.155176
Wellmann, R., PreuB, S., Tholen, E., Heinkel, J., Wimmers, K., & Bennewitz, J. (2013). Genomic selection using low density marker panels with application to a sire line in pigs. Genetics Selection Evolution, 45(28), 1-11. DOI: https://doi.org/10.1186/1297-9686-45-28
Zhang, H., Yin, L., Wang, M., Yuan, X., & Liu, X. (2019). Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Frontiers in Genetics, 10(189), 1-10. DOI: https://doi.org/10.3389/fgene.2019.00189
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Grant numbers APQ-01638-18 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers Code 001 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 307798/2019-4 and 306772/2020-5 -
Consórcio Pesquisa Café