Adaptability and stability of corn genotypes for baby corn production via GGE biplot and REML

Resumo

Owing to the interaction between genotype and environment (G × E), selecting and developing high-yielding varieties with strong phenotypic adaptability and stability is paramount. Therefore, this study aimed to determine the efficiency of selection of corn genotypes for baby corn production based on productivity, adaptability, and stability. Eleven corn genotypes were evaluated in six municipalities in the state of Espírito Santo, Brazil in 2019. Superior genotypes were selected using the harmonic mean of the relative performance of the predicted genetic values (HMRPGV) and graphical analysis using the genotype main effect plus G × E (GGE) interaction biplot. Genotypes AG 1051 and BR 106 exhibited the best performance across environments. The HMRPGV method and ideotypes obtained through graphic analysis proved effective in selecting genotypes with high productive potential, responsiveness to environmental changes, and highly predictable behavior in the face of environmental stimuli.

Downloads

Não há dados estatísticos.

Referências

Carvalho, M. P., Nunes, J. A. R., Carmo, E. L., Simon, G. A., & Moraes, R. N. O. (2021). Adaptability and stability of conventional soybean by GGE biplot analysis. Pesquisa Agropecuária Tropical, 51, 1-10. https://doi.org/10.1590/1983-40632021v5167995

Costa, A. C., Coelho, F. C., Garcia, R. V., Lima, W. L., Vivas, M., Prins, C. L., & Rocha, J. G. (2020). Performance of maize seedlings for baby corn production. Horticultura Brasileira, 38(4), 421-427. http://doi.org/10.1590/s0102-0536202004013

Choudhary, M., Kumar, B., Kumar, P., Guleria, S. K., Singh, N. K., Khulbe, R., Kamboj, M. C., Vyas, M., Srivastava, R. K., Puttaramanaik, Swain, D., Mahajan, V., & Rakshit, S. (2019). GGE biplot analysis of genotype × environment interaction and identification of mega-environment for baby corn hybrids evaluation in India. Indian Journal of Genetics and Plant Breeding, 79(4), 1-14. https://doi.org/10.31742/IJGPB.79.4.3

Cruz, C. D. (2016). Genes software: extended and integrated with the R, Matlab and Selegen. Acta Scientiarum. Agronomy, 38(4), 547-552. https://doi.org/10.4025/actasciagron.v38i4.32629

Cruz, C. D., Carneiro, P. C. S., & Regazzi, A. J. (2014). Modelos biométricos aplicados ao melhoramento genético. Editora UFV.

Kumar, P., Kumar, S., Choudhary, M., Chikappa, G. K., Kumar, B., Singh, N. K., & Sinha, S. K. (2020). GGE biplot based stability analysis of experimental hybrids for baby corn purpose and green fodder. Range Management and Agroforestry, 41(1), 60-66.

Lima, R., & Borém, A. (2018). Melhoramento de milho. Editora UFV.

Lucianetti, A. A. F., & Bellettini, S. (2020) Effect of row spacing and seeding rate on baby corn production. Semina: Ciências Agrárias, 41(6), 2857-2872. https://doi.org/10.5433/1679-0359.2020v41n6Supl2p2857

Nascimento, M. R., Santos, P. R., Coelho, F. C., Jaeggi, M. E. P. C., Costa, K. D. S., & Souza, M. N. (2018). Biometric analysis in maize genotypes suitable for baby corn production in organic farming system. Horticultura Brasileira, 36(3), 419-425. https://doi.org/10.1590/S0102-053620180322

Olanrewaju, O. S., Oyatomi, O., Babalola, O. O., & Abberton, M. (2021). GGE Biplot analysis of genotype × environment interaction and yield stability in Bambara groundnut. Agronomy, 11(9), 1-14. https://doi.org/10.3390/agronomy11091839

Oliveira, T. R. A., Gravina, G. A., Oliveira, G. H. F., Araújo, K. C., Araújo, L. C., Daher, R. F., Vivas, M., Gravina, L. M., & Cruz, D. P. (2018). The GT Biplot analysis of 59 green bean traits. Ciência Rural, 48(6), 1-6. https://doi.org/10.1590/0103- 8478cr20170757

Pereira Filho, I. A., & Karum, D. (2008). A cultura do minimilho. Embrapa Informação Tecnológica.

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org

Resende, M. D. V. (2007). SELEGEN-REML/BLUP: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Embrapa Florestas.

Resende, M. D. V. (2016). Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330-339. https://doi.org/10.1590/1984-70332016v16n4a49

Santos, A., Amaral Júnior, A. T., Kurosawa, R. N. F., Gerhardt, I. F. S., & Fritsche Neto, R. (2017). GGE Biplot projection in discriminating the efficiency of popcorn lines to use nitrogen. Ciência e Agrotecnologia, 41(1), 22-31. https://doi.org/10.1590/1413-70542017411030816

Santos, P. R., Costa, K. D. S., Nascimento, M. R., Lima, T. V., Souza, Y. P., Costa, A. F., & Silva, J. W. (2018). Simultaneous selection for yield, stability and adaptability of carioca and black beans. Pesquisa Agropecuária Brasileira, 53(6), 736-745. https://doi.org/10.1590/S0100-204X2018000600010

Sistema de Monitoramento Agrometeorológico [Agritempo]. (2023). Meteorological data. Embrapa Informática Agropecuária. https://www.agritempo.gov.br

Souza, A. G., Daher, R. F., Santana, J. G. S., Ambrosio, M., Nascimento, M. R., Vidal, A. K. F., Souza Filho, B. F., Melo, L., Gravina, G. A., Santos, R. M., Leite, C. L., Farias, J. E. C., Stida, W. F., & Rocha, R. S. (2023). Adaptability and stability of black bean genotypes for Rio de Janeiro, by GGE biplot analysis. Crop Breeding and Applied Biotechnology, 23(2), 1-8. http://doi.org/10.1590/1984-70332023v23n2a15

Thakur, D. R., Sharma, V., & Pathik, S. R. (2000). Evaluation of maize (Zea mays) cultivars for their suitability baby corn under mid-hills of north-western Himalayas. Indian Journal Agricultural Sciences, 70(3), 146-148.

Vidal, A. K. F., Freitas, R. S., Daher, R. F., Ambrósio, M., Santana, J. G. S., Stida, W. F., Nascimento, M. R., Santos, R. M., Leite, C. L., & Lamônica Netto, J. A. (2023). Genotypic superiority and repeatability coefcient in elephant grass clones for forage production via mixed models. Euphytica, 219(43), 1-12. http://doi.org/10.1007/s10681-023-03170-9

Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE Biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 47(2), 641-653. http://doi.org/10.2135/cropsci2006.06.0374

Yan, W., & Holland, J. B. (2010). A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 171, 355-369. http://dx.doi.org/10.1007/s10681-009-0030-5

Yan, W., Hunt, L. A., Sheng, Q. L., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE Biplot. Crop Science, 40(3), 597-605. https://doi.org/10.2135/cropsci2000.403597x

Yan, W., & Kang, M. S. (2019). GGE Biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press.

Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623-645. https://doi.org/10.4141/ P05-169.

Publicado
2025-03-25
Como Citar
Nascimento, M. R., Santana , J. G. S., Santos, P. R. dos, Daher, R. F., Souza, A. G. de, Vidal , A. K. F., Ambrósio, M., & Melo, G. G. de. (2025). Adaptability and stability of corn genotypes for baby corn production via GGE biplot and REML. Acta Scientiarum. Agronomy, 47(1), e69886. https://doi.org/10.4025/actasciagron.v47i1.69886
Seção
Melhoramento Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus