Physiological and nutritional parameters of drought resistance in coffee seedlings genotypes

  • Elder Andreazi Universidade Estadual de Londrina / Instituto de Desenvolvimento Rural do Paraná
  • Bruno Teixeira de Sousa Universidade Estadual de Londrina (UEL)
  • Halley Caixeta Oliveira Universidade Estadual de Londrina
  • Inês Cristina de Batista Fonseca Universidade Estadual de Londrina
  • Valdir Mariucci Junior Universidade Estadual de Londrina / Instituto de Desenvolvimento Rural do Paraná
  • Luciana Harumi Shigueoka Instituto de Desenvolvimento Rural do Paraná
  • Gustavo Hiroshi Sera Instituto de Desenvolvimento Rural do Paraná https://orcid.org/0000-0002-5372-6169

Resumo

Drought is an environmental condition that compromises the development of coffee plants. New coffee genotypes that are resistant to drought must be selected quickly and practically. The objectives of this study were to evaluate the resistance of five genotypes of Coffea arabica, including three new genotypes with introgression of genes from Coffea racemosa (H0113-40-26-1, H0113-40-26-19, and H0113-40-26-10), to water restriction and relate the intensity of plant wilting with physiological responses and nutrient accumulation. The experiment was conducted using 45 coffee seedlings obtained from seeds with six pairs of leaves cultivated in tubes. Some seedlings were subjected to two water restriction periods, whereas the remainder were kept under irrigation. The photosynthesis rate, transpiration rate, and wilting intensity were evaluated after each restriction period. Nutrient content was also evaluated after two periods of water restriction. The evaluation of wilting intensity corroborated the physiological parameters. There was a reduction in photosynthesis and transpiration rates under water restriction and nutrient accumulation in coffee seedlings H0113-40-26-1, H0113-40-26-19, and H0113-40-26-10 increased under these conditions. C. arabica genotypes carrying the genes of C. racemosa presented good drought resistance, with H0113-40-26-10 being the most resistant and showing the lowest wilt intensity.

Downloads

Não há dados estatísticos.

Referências

Ahanger, M. A., Tyagi, S. R., Wani, M. R., & Ahmad, P. (2013). Drought tolerance: Role of organic osmolytes, growth regulators, and mineral nutrients (1st ed.). In P. Ahmad, & M. Wani (Eds.), Physiological mechanisms and adaptation strategies in plants under changing environment (pp. 25-55). Springer.

Ahmad, R., Waraich, E. A., Ashraf, M. Y., Ahmad, S., & Aziz, T. (2014). Does nitrogen fertilization enhance drought tolerance in sunflower? A review. Journal of Plant Nutrition, 37(6), 942-963. https://doi.org/10.1080/01904167.2013.868480

Andreazi, E., Carducci, F. C., Sera, T., Pereira, C. T. M., Mariucci Junior, V., Carvalho, F. G., Shigueoka, L. H., Santos, W. G., Fonseca, I. C. B., & Sera, G. H. (2017). Early ripening cycle and yield in coffee genotypes derivatives from C1195-5-6-2. Coffee Science, 12(4), 575-582.

Andreazi, E., Sera, G. H., Faria, R. T., Sera, T., Shigueoka, L. H., Carvalho, F. G., Carducci, F. C., & Chamlet, D. (2015). Performance of F1 hybrids of arabica coffee with simultaneous resistance to leaf rust, bacterial blight and leaf miner. Coffee Science, 10(3), 375-382.

Andreazi, E., Sera, G. H., Sera, T., Fonseca, I. C. B., Carducci, F. C., Shigueoka, L. H., Santos, W. G., & Pereira, C. T. M. (2018). Resistance to bacterial halo blight in Arabica coffee lines derivate from the genotype C1195-5-6-2 under natural infection conditions. Crop Breeding and Applied Biotechnology, 18(1), 110-115. https://doi.org/10.1590/1984-70332018v18n1n17

Batista, L. A., Guimarães, R. J., Pereira, F. J., Carvalho, G. R., & Castro, E. M. (2010). Leaf anatomy and water potential in the coffee cultivars tolerance to water stress. Revista Ciência Agronômica, 41(3), 475-481. https://doi.org/10.1590/S1806-66902010000300022

Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168(2), 275-292. https://doi.org/10.1111/j.1469-8137.2005.01543.x

Carducci, F. C., Fonseca, I. C. B., Santos, W. G., Pereira, C. T. M., Mariucci Junior, V., Sera, T., & Sera, G. H. (2019). Resistance to red mite in Coffea arabica genotype introgressed with Coffea racemosa genes. Australian Journal of Crop Science, 13(5), 683-686. https://doi.org/10.21475/ajcs.19.13.05.p1254

Carmo, C. A. F. S., Araújo, W. S., Bernardi, A. C. C., & Saldanha, M. F. C. (2000). Métodos de análise de tecidos vegetais utilizados na Embrapa Solos. Embrapa Solos.

Carvalho, F. G., Sera, G. H., Andreazi, E., Sera, T., Fonseca, I. C. B., Carducci, F. C., Shigueoka, L. H., Holderbaum, M. M., & Costa, K. C. (2017). Drought tolerance in seedlings of coffee genotypes carrying genes of different species. Coffee Science, 12(2), 156-163.

Companhia Nacional de Abastecimento [CONAB]. (2022). Acompanhamento da safra brasileira de café (v. 9, n. 2, safra 2022, segundo levantamento). CONAB.

DaMatta, F. M. (2004). Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Brazilian Journal of Plant Physiology, 16(1), 1-6. https://doi.org/10.1590/S1677-04202004000100001

DaMatta, F. M., Avila, R. T., Cardoso, A. A., Martins, S. C. V., & Ramalho, J. C. (2018). Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A review. Journal of Agricultural and Food Chemistry, 66(21), 5264-5274. https://doi.org/10.1021/acs.jafc.7b04537

Dias, P. C., Araujo, W. L., Moraes, G. A. B. K., Barros, R. S., & DaMatta, F. M. (2007). Morphological and physiological responses of two coffee progenies to soil water availability. Journal of Plant Physiology, 164(12), 1639-1647. https://doi.org/10.1016/j.jplph.2006.12.004

Fernandes-Brum, C. N., Melo, E. F., Barquero, L. O. B., Alves, J. D., & Chalfun-Junior, A. (2013). Modifications in the metabolism of carbohydrates in (Coffea arabica L. cv. Siriema) seedlings under drought conditions. Coffee Science, 8(2), 140-147.

Fialho, G. S., Silva, D. P., Reis, E. F., Fonseca, A. F. A., & Ferrão, M. A. G. (2010). Behavior of Coffea arabica L. plants exposed to water deficits in different phases of their initial development. Idesia (Arica), 28(3), 35-39. https://doi.org/10.4067/S0718-34292010000300005

Hussain, M., Farooq, S., Hasan, W., Ul-Allah, T. M., Tanveer, M., Farooq, M., & Nawaz, A. (2018). Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agricultural Water Management, 201, 152-166. https://doi.org/10.1016/j.agwat.2018.01.028

International Coffee Organization [ICO]. (2022). Coffee market report June 2022. ICO. https://www.ico. org/documents/cy2021-22/cmr-0622-e.pdf

Kath, J., Craparo, A., Fong, Y., Byrareddy, V., Davis, A. P., King, R., Nguyen-Huy, T., van Asten, P. J. A., Marcussen, T., Mushtaq, S., Stone, R., & Power, S. (2022). Vapour pressure deficit determines critical thresholds for global coffee production under climate change. Nature Food, 3, 871-880. https://doi.org/10.1038/s43016-022-00614-8

Machado, A. H. R., Puia, J. D., Menezes, K. C., & Machado, W. (2020). Coffee culture (Coffea arabica) in the agroforestry system. Brazilian Journal of Animal and Environmental Research, 3(3), 1357-1369. https://doi.org/10.34188/bjaerv3n3-053

Mariucci Junior, V., Shigueoka, L. H., Pereira, C. T. M., Carducci, F. C., Sera, T., & Sera, G. H. (2022). Resistance to frost in Arabica coffee lines introgressed with Coffea racemosa Lour. Genes. Australian Journal of Crop Science, 16(3), 338-342. https://doi.org/10.21475/ajcs.22.16.03.p2925

Marur, C. J., Mazzafera, P., & Magalhães, A. C. (2000). Nitrate reductase activity in cotton plants under water deficit and after turgescence recovery. Scientia Agricola, 57(2), 277-281. https://doi.org/10.1590/S0103-90162000000200013

Maseda, P. H., & Fernández, R. J. (2006). Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 57(15), 3963-3977. https://doi.org/10.1093/jxb/erl127

Mazzafera, P., & Carvalho, A. (1987). Yield and drought tolerance evaluation of coffee plants (Coffea arabica L.). Bragantia, 46(2), 403-415. https://doi.org/10.1590/S0006-87051987000200020

McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

Medina Filho, H. P., Carvalho, A., & Medina, D. M. (1977). Potential use of Coffea racemosa germplasm for breeding of Arabica coffee. Bragantia, 36(1), 43-46. https://doi.org/10.1590/S0006-87051977000100040

Melo, E. F., Fernandes-Brum, C. N., Pereira, F. J., Castro, E. M., & Chalfun-Júnior, A. (2014). Anatomic and physiological modifications in seedlings of Coffea arabica cultivar Siriema under drought conditions. Ciência e Agrotecnologia, 38(1), 25-33. https://doi.org/10.1590/S1413-70542014000100003

Menezes-Silva, P. E., Sanglard, L. M. V. P., Ávila, R. T., Morais, L. E., Martins, S. C. V., Nobres, P., Patreze, C. M., Ferreira, M. A., Araújo, W. L., Fernie, A. L., & DaMatta, F. M. (2017). Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. Journal of Experimental Botany, 68(15), 4309-4322. https://doi.org/10.1093/jxb/erx211

Moat, J., Gole, T. W., & Davis, A. P. (2019). Least concern to endangered: applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Global Change Biology, 25(2), 390-403. https://doi.org/10.1111/gcb.14341

Mohammed, M., Shimbir, T., & Meskelu, E. (2021). Evaluation of coffee genotypes for drought tolerance in South Ethiopia. Irrigation & Drainage Systems Engineering, 10(5), 1-5.

Nieves-Cordones, M., Ródenas, R., Lara, A., Martínez, V., & Rubio, F. (2019). The combination of K+ deficiency with other environmental stresses: What is the outcome. Physiologia Plantarum, 165(2), 264-276. https://doi.org/10.1111/ppl.12827

Pinheiro, H. A. (2005). Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany, 96(1), 101-108. https://doi.org/10.1093/aob/mci154

Queiroz-Voltan, R. B., Nardin, C. F., Fazuoli, L. C., & Braghini, M. T. (2014). Leaf anatomy characterization of Coffea arabica plants at different seasonal periods. Biotemas, 27(4), 1-10. https://doi.org/10.5007/2175-7925.2014v27n4p1

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Ramirez-Builes, V. H., & Küsters, J. (2021). Calcium and potassium nutrition increases the water use efficiency in coffee: A promising strategy to adapt to climate change. Hydrology, 8(2), 1-11. https://doi.org/10.3390/hydrology8020075

Sedri, M. H., Roohi, E., Niazian, M., & Niedbala, G. (2022). Interactive effects of nitrogen and potassium fertilizers on quantitative-qualitative traits and drought tolerance indices of rainfed wheat cultivar. Agronomy, 12(1), 1-17. https://doi.org/10.3390/agronomy12010030

Sera, G. H., Carvalho, C. H. S., Abrahão, J. C. R., Pozza, E. A., Matiello, J. B., Almeida, S. R., Bartelega, L., & Botelho, D. M. S. (2022). Coffee leaf rust in Brazil: historical events, current situation and control measures. Agronomy, 12(2), 496. https://doi.org/10.3390/agronomy12020496

Shabbir, R. N., Waraich, E. A., Ali, H., Nawaz, F., Ashraf, M. Y., Ahmad, R., Awan, M. I., Ahmad, S., Irfan, M., Hussain, S., & Ahmad, Z. (2016). Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 23(3), 2651-2662. https://doi.org/10.1007/s11356-015-5452-0

Silva, E. C., Nogueira, R. J. M. C., Silva, M. A., & Albuquerque, M. B. (2011). Drought stress and plant nutrition. Plant Stress, 5(Special Issue 1), 32-41.

Song, Y., Li, J., Liu, M., Meng, Z., Liu, K., & Sui, N. (2019). Nitrogen increases drought tolerance in maize seedlings. Functional Plant Biology, 46(4), 350-359. https://doi.org/10.1071/FP18186

Tariq, A., Pan, K., Olatunji, O.A., Graciano, C., Li, Z., Sun, F., Sun, X., Song, D., Chen, W., Aiping, Z., Wu, X., Zhang, L., Mingrui, D., Xiong, Q., & Liu, C. (2017). Phosphorous application improves drought tolerance of Phoebe zhennan. Frontiers in Plant Science, 8(1561), 1-12. https://doi.org/10.3389/fpls.2017.01561

Tounekti, T., Mahdhi, M., Al-Turki, T. A., & Khemira, H. (2018). Water relations and photo-protectionmechanisms during drought stress in four coffee (Coffea arabica) cultivars from southwestern Saudi Arabia. South African Journal of Botany, 117, 17-25. https://doi.org/10.1016/j.sajb.2018.04.022

Volsi, B., Telles, T.S., Caldarelli, C.E., Camara, M.R.G. (2019). The dynamics of coffee production in Brazil. PLoS ONE, 14(7), 1-15. https://doi.org/10.1371/journal.pone.0219742

Waraich, E. A., Ahmad, R., Saifullah, Ashraf, M. Y., & Ehsanullah. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6), 764-777.

Zörb, C., Senbayran, M., & Peiter, E. (2014). Potassium in agriculture - Status and perspectives. Journal of Plant Physiology, 171(9), 656-669. https://doi.org/10.1016/j.jplph.2013.08.008

Publicado
2025-03-25
Como Citar
Andreazi, E., Sousa, B. T. de, Oliveira, H. C., Fonseca , I. C. de B., Mariucci Junior , V., Shigueoka, L. H., & Sera, G. H. (2025). Physiological and nutritional parameters of drought resistance in coffee seedlings genotypes. Acta Scientiarum. Agronomy, 47(1), e70207. https://doi.org/10.4025/actasciagron.v47i1.70207
Seção
Melhoramento Vegetal

Funding data

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus