Multivariate relationships in strawberry cultivated with native communities of arbuscular mycorrhizal fungi

Palavras-chave: Fragaria X ananassa Duch.; mycorrhizal biotechnology; principal component analysis; Pearson correlation; canonical correlation.

Resumo

The mechanisms underlying the interactions between native mycorrhizal fungal communities and strawberry plants remain unclear. However, the identification of specific associations among variables and their influence on the total experimental variability when using inoculants based on arbuscular mycorrhizal fungi should enable the identification of the most relevant ones. Herein, our objective was to identify and characterize variables related to each other and to the total experimental variability among strawberry plants inoculated with native mycorrhizal communities. Experimental treatments included an uninoculated control and eight multi-specific inoculants from cultivated soils and native forests from reference strawberry-cultivation sites (Bom Princípio, Flores da Cunha, Ipê, and São José of Hortêncio) in Rio Grande do Sul State, Brazil. Morphological, productivity, and quality traits were evaluated. Inoculants obtained from agricultural ecosystems of Bom Princípio and Ipê did not influence the horticultural performance of strawberries, while those from Flores da Cunha largely explained total experimental variability, and therefore, should be considered when selecting the location to obtain inoculants for use on strawberry plants. Number of fruits, fruit flavor, chlorophyll a, and total chlorophyll contents, and, most importantly, root variables, should be included for experimental analysis of ‘Albion’ strawberry responses to multi-specific mycorrhizal inoculants from different locations.

Downloads

Não há dados estatísticos.

Referências

Atif, M. J., Jellani, G., Humair, M., Ahmed, H., Saleem, N., Ullah, H., Khan, M. Z., & Ikram, S. (2016). Different growth media effect the germination and growth of tomato seedlings. Science, Technology & Development, 35(3), 123-127. https://doi.org/10.3923/std.2016.123.127

Böhm, W. (1979). Methods of studying root systems. Springer-Verlag.

Chiomento, J. L. T., Costa, R. C., De Nardi, F. S., Trentin, N. S., Nienow, A. A., & Calvete, E. O. (2019a). Arbuscular mycorrhizal fungi communities improve the phytochemical quality of strawberry. The Journal of Horticultural Science and Biotechnology, 94(5), 653-663. https://doi.org/10.1080/14620316.2019.1599699

Chiomento, J. L. T., Stürmer, S. L., Carrenho, R., Costa, R. C., Scheffer-Basso, S. M., Antunes, L. E. C., Nienow, A. A., & Calvete, E. O. (2019b). Composition of arbuscular mycorrhizal fungi communities signals generalist species in soils cultivated with strawberry. Scientia Horticulturae, 253, 286-294. https://doi.org/10.1016/j.scienta.2019.04.029

Chiomento, J. L. T., De Nardi, F. S., Filippi, D., Trentin, T. S., Dornelles, A. G., Fornari, M., Nienow, A. A., & Calvete, E. O. (2021a). Morpho-horticultural performance of strawberry cultivated on substrate with arbuscular mycorrhizal fungi and biochar. Scientia Horticulturae, 282, 110053. https://doi.org/10.1016/j.scienta.2021.110053

Chiomento, J. L. T., De Nardi, F. S., Kujawa, S. C., Deggerone, Y. S., Fante, R., Kaspary, I. J., Dornelles, A. G., Huzar-Novakowiski, J., & Trentin, T. S. (2023). Multivariate contrasts of seven strawberry cultivars in soilless cultivation and greenhouse in southern Brazil. Advanced Chemicobiology Research, 2(1), 62-78. https://doi.org/10.37256/acbr.2120232332

Chiomento, J. L. T., Lima Júnior, E. P., D’Agostini, M., De Nardi, F. S., Trentin, T. S., Dornelles, A. G., Huzar-Novakowiski, J., & Calvete, E. O. (2021b). Horticultural potential of nine strawberry cultivars by greenhouse production in Brazil: A view through multivariate analysis. Scientia Horticulturae, 279, 109738. https://doi.org/10.1016/j.scienta.2020.109738

Dickson, A., Leaf, A. L., & Hosner, J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36(1), 10-13. https://doi.org/10.5558/tfc36010-1

Faye, A., Dalpé, Y., Ndung’u-Magiroi, K., Jefwa, J., Ndoye, I., Diouf, M., & Lesueur, D. (2013). Evaluation of commercial arbuscular mycorrhizal inoculants. Canadian Journal of Plant Science, 93(6), 1201-1208. https://doi.org/10.4141/cjps2013-326

Furlani, P. R., & Fernandez Júnior, F. (2004). Cultivo hidropônico de morango em ambiente protegido. Embrapa Clima Temperado.

Hair, J. F., Black, W. C., Babin, B., Anderson, R., & Tatham, R. L. (2009). Análise multivariada de dados. Bookman.

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A, 374(2065), 1-16. https://doi.org/10.1098/rsta.2015.0202

Koch, A. M., Antunes, P. M., Maherali, H., Hart, M. M., & Klironomos, J. N. (2017). Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: Conservatism in fungal morphology does not predict host plant growth. New Phytologist, 214(3), 1330-1337. https://doi.org/10.1111/nph.14465

Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International, 88(5), 1269-1278. https://doi.org/10.1093/jaoac/88.5.1269

Maherali, H., & Klironomos, J. N. (2012). Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One, 7(5), 1-9. https://doi.org/10.1371/journal.pone.0036695

Maltz, M. R., & Treseder, K. K. (2015). Sources of inocula influence mycorrhizal colonization of plants in restoration projects: A meta-analysis. Restoration Ecology, 23(5), 625-634. https://doi.org/10.1111/rec.12231

Melo, C. D., Walker, C., Krüger, C., Borges, P. A. V., Luna, S., Mendonça, D., Fonseca, H. M. A. C., & Machado, A. C. (2019). Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azorica on native forest of Azores. Annals of Microbiology, 69(11), 1309-1327. https://doi.org/10.1007/s13213-019-01535-x

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis. Wiley.

Oláh, B., Brière, C., Bécard, G., Dénarié, J., & Gough, C. (2005). Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. The Plant Journal, 44(2), 195-207. https://doi.org/10.1111/j.1365-313X.2005.02522.x

Oliveira, J. R. G., Resende, G. M., Melo, N. F., & Yano-Melo, A. M. (2017). Symbiotic compatibility between arbuscular mycorrhizal fungi (autoctone or exotic) and three native species of the Caatinga in different phosphorus levels. Acta Scientiarum. Biological Sciences, 39(1), 59-69. https://doi.org/10.4025/actascibiolsci.v39i1.33486

Öpik, M., Metsis, M., Daniell, T. J., Zobel, M., & Moora, M. (2009). Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 184(2), 424-437. https://doi.org/10.1111/j.1469-8137.2009.02920.x

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3

Price, A., Zaitlen, N., Reich, D., & Patterson, N. (2010). New approaches to population stratification in genome-wide association studies. Nature Reviews Genetics, 11, 459-463. https://doi.org/10.1038/nrg2813

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Redecker, D., Schubler, A., Stockinger, H., Stürmer, S. L., Morton, J. B., & Walker, C. (2013). An evidence based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23, 515-531. https://doi.org/10.1007/s00572-013-0486-y

Rencher, A. C. (2002). Methods of multivariate analysis. John Wiley & Sons.

Trouvelot, A., Kouch, J., & Gianinazzi-Pearson, V. (1986). Mesure du taux de mycorhization VA d’un système radiculaire: recherche of method d’estimation ayant une signification fonctionelle. In V. Gianinazzi-Pearson, & S. Gianinazzi (Eds.), Aspects physiologiques et génétiques des mycorhizes (pp. 217-221). Inra Press.

van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205(4), 1406-1423. https://doi.org/10.1111/nph.13288

Zenebon, O., Pascuet, N. S., & Tiglea, P. (2008). Métodos físico-químicos para análise de alimentos. Instituto Adolfo Lutz.

Zeng, T., Holmer, R., Hontelez, J., Lintel-Hekkert, B., Marufu, L., Zeeuw, T., Wu, F., Schijlen, E., Bisseling, T., & Limpens, E. (2018). Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. The Plant Journal, 94(3), 411-425. https://doi.org/10.1111/tpj.13908

Publicado
2025-03-25
Como Citar
Lúcio, A. D., Calvete, E. O., De Nardi, F. S., Lambrecht, D. M., Engers, L. B. de O., & Chiomento, J. L. T. (2025). Multivariate relationships in strawberry cultivated with native communities of arbuscular mycorrhizal fungi. Acta Scientiarum. Agronomy, 47(1), e70712. https://doi.org/10.4025/actasciagron.v47i1.70712
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus