Soil phosphorus fractions in response to cropping system, liming, and phosphate fertilization in an expanding sugarcane plantation area

Palavras-chave: limestone; crotalaria; labile phosphorus; moderately labile P; non-labile P.

Resumo

The forms of phosphorus (P) present in soil are not stable and permanent. The sequential fractionation of soil P allows us to understand the dynamics of this nutrient in the soil. This study identifies alterations in P forms within the soil, induced by the processes of liming, phosphating, and cover crop cultivation preceding the planting of sugarcane, within an environment marked by constraints on sugarcane expansion. Employing a randomized block experimental design with sub-split plots and three replications, two lime doses (6 Mg ha-1 and 12 Mg ha-1) were assessed in the primary plots. Subsequently, the impact of three distinct species-Glycine max, Crotalaria spectabilis, and Crotalaria juncea remnant-cultivated following the Urochloa brizanta cultivar Xaraés, was evaluated in the subplots, preceding the introduction of Saccharum officinarum. Further refinement involved the examination of three Phosfaz calcined thermophosphate doses (0, 380, and 760 kg ha-1) administered on the spot in the sub-subplots and incorporated with limestone and gypsum. The experiment unfolded under field conditions, and soil samples were collected at depths of 0 to 0.1 m, 0.1 to 0.2 m, and 0.2 to 0.4 m for the purpose of conducting phosphorus fractionation. Liming, phosphating, and antecedent crops to sugarcane cultivation exhibited varying impacts on the forms of P in the assessed soil layers. Generally, the application of limestone at a dosage exceeding that required for soil acidity correction (12 Mg ha-1), coupled with corrective fertilization involving 380 kg ha-1 of thermophosphate and the cultivation of Crotalaria juncea, resulted in an augmented content of labile phosphorus up to the 0.4 m soil layer. These findings suggest that liming, phosphating, and cultural practices-particularly involving Crotalaria juncea cultivation-have the potential to enhance phosphorus availability during the renewal of sugarcane fields.

Downloads

Não há dados estatísticos.

Referências

Abraches, M. O., Silva, G. A. M., Santos, L. C., Pereira, L. F., & Freitas, G. B. (2021). Contribuição da adubação verde nas características químicas, físicas e biológicas do solo e sua influência na nutrição de hortaliças. Research, Society and Development, 10(7), 1-17. https://doi.org/10.33448/rsd-v10i7.16351

Amadou, I., Houben, D., & Faucon, M. P. (2021). Unravelling the role of rhizosphere microbiome and root traits in organic phosphorus mobilization for sustainable phosphorus fertilization. A review. Agronomy, 11(11), 1-28. https://doi.org/10.3390/agronomy11112267

Barbosa, I. R., Santana, R. S., Mauad, M., & Garcia, R. A. (2020). Dry matter production and nitrogen, phosphorus and potassium uptake in crotalaria juncea and crotalaria spectabilis. Pesquisa Agropecuária Tropical, 50, 1-10. https://doi.org/10.1590/1983-40632020v5061011

Bortoluzzi, E. C., Pérez, C., Ardisson, J. D., Tiecher, C., & Carner, L. (2015). Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Applied Clay Science, 104, 196-204. https://doi.org/10.1016/j.clay.2014.11.032

Calegari, A. (2016). Manual técnico de plantas de cobertura (2. ed.). IAPAR.

Carvalho, M. L., Vanolli, B. S., Schiebelbein, B. E., Borba, D. A., Luz, F. B., Cardoso, G. M., Bortolo, L. S., Marostica, M. E. M., & Souza, V. S. (2022). Guia prático de plantas de cobertura: aspectos filotécnicos e impactos sobre a saúde do solo. ESALQ-USP.

Collier, L. S., Arruda, E. M., Campos, L. F. C., & Nunes, J. N. V. (2018). Atributos químicos do solo e produtividade de milho em residual de leguminosas em sistema agroflorestal. Revista Caatinga, 31(2), 279-289. https://doi.org/10.1590/1983-21252018v31n203rc

Condron, L. M., & Goh, K. M. (1989). Effects of long-term phosphatic fertilizer applicationson amounts and forms of phosphorus in soils under irrigated pasture in New Zealand. Journal of Soil Science, 40(2), 383-395. https://doi.org/10.1111/j.1365-2389.1989.tb01282.x

Fietz, C. R., Fisch, G. F., Comunello, E., & Flumignan, D. L. (2017). O clima da região de Dourados, Mato Grosso do Sul. Embrapa Agropecuária Oeste.

Guo, L., Yu, Z., Li, Y., Xie, Z., Wang, G., Liu, X., Liu, J., Liu, J., & Jin, J. (2022). Plant phosphorus acquisition links to phosphorus transformation in the rhizospheres of soybean and rice grown under CO2 and temperature co-elevation. Science of the Total Environment, 823, 153558. https://doi.org/10.1016/j.scitotenv.2022.153558

Hansel, F. D., Diaz, D. A. R., Amado, T. J. C., & Rosso, L. H. M. (2017). Deep banding increases phosphorus removal by soybean grown under no-tillage production systems. Agronomy Journal, 109(3), 1091-1098. https://doi.org/10.2134/agronj2016.09.0533

Hedley M. J., Stewart J. W. B., & Chauhan, B. S. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46(5), 970-976. https://doi.org/10.2136/sssaj1982.03615995004600050017x

Horii, J. A. (2004). A qualidade da matéria prima, na visão industrial. Visão Agrícola, 1(1), 91-93.

Leite, J. N. F., Cruz, M. C. P., Ferreira, M. E., Andrioli, I., & Braos, L. B. (2016). Frações orgânicas e inorgânicas do fósforo no solo influenciadas por plantas de cobertura e adubação nitrogenada. Pesquisa Agropecuária Brasileira, 51(11), 1880-1889. https://doi.org/10.1590/S0100-204X2016001100010

Lenth, R. V., Banfai, B., Bolker, B., Buerkner, P., Giné-Vázquez, I., Herve, M., Jung, M., Love, J., Miguez, F., Piaskowski, J., Riebl, H., & Singmann, H. (2025). emmeans: Estimated marginal means, aka least-squares means (Version 1.11.0). CRAN. https://rvlenth.github.io/emmeans/

Lu, D., Song, H., Jiang, S., Chen, X., Wang, H., & Zhou, J. (2019). Integrated phosphorus placement and form for improving wheat grain yield. Agronomy Journal, 111(4), 1998-2004. https://doi.org/10.2134/agronj2018.09.0559

Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5

Oliveira, L. E. Z., Souza, D. M. G., Figueiredo, C. C., Nunies, R. S., & Malaquias, J. V. (2020). Long‐term phosphate fertilization strategies evaluation in a brazilian oxisol. Agronomy Journal, 112(5), 4303-4320. https://doi.org/10.1002/agj2.20324

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Rigby, R. A., & Stasinipoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society Series C: Applied Statistics, 54(3), 507-554. https://doi.org/10.1111/j.1467-9876.2005.00510.x

Rotta, L. R., Paulino, H. B., Anghinoni, I, Souza, E. D., Lopes, G., & Carneiro, M. A. C. (2015). Phosphorus fractions and availability in a haplic plinthosol under no-tillage system in the Brazilian Cerrado. Ciência e Agrotecnologia, 39(3), 216-224. https://doi.org/10.1590/S1413-70542015000300002

Rheinheimer, D. S., Anghinoni, I., & Conte, E. (2000). Fósforo da biomassa microbiana em solos sob diferentes sistemas de manejo. Revista Brasileira de Ciência do Solo, 24(3), 589-597. https://doi.org/10.1590/S0100-06832000000300012

Rheinheimer, D. S., Fornari, M. R., Bastos, M. C., Fernandes, G., Santanna, M. A., Calegari, A., Canalli, L. B. S., Caner, L., Labanowski, J., & Tiecher, T. (2019). Phosphorus Distribution After Three Decades of Diferente Soil Management and Cover Crops in Subtropical Region. Soil and Tillage Research, 192, 33-41. https://doi.org/10.1016/j.still.2019.04.018

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araújo Filho, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solo (2. ed.). Embrapa.

Sousa, D. M. G., Nunes, R. S., Rein, T. A., & Santos Júnior, J. D. G. (2016). Manejo da adubação fosfatada para culturas anuais no cerrado. Embrapa Cerrados.

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3. ed.). Embrapa.

Tiecher, T., Gomes, M. V., Ambrosini, V. G., Amorim, M. B, & Bayer, C. (2018). Assessing linkage between soil phosphorus forms in contrasting tillage systems by path analysis. Soil and Tillage Research, 175, 276-280. https://doi.org/10.1016/j.still.2017.09.015

Yang, J. X., Richards, R., Yi, J., & Jin, H. (2022). Both biomass accumulation and harvest indez drive the yield improvements in soybean at high and low phosphorus in south-west China. Field Crops Research, 277, 108426. https://doi.org/10.1016/j.fcr.2021.108426

Zhu, P., Abdelaziz, O. Y., Hulteberg, C. P., & Riisager, A. (2020). New synthetic approaches to biofuels from lignocellulosic biomass. Current Opinion in Green and Sustainable Chemistry, 21, 16-21. https://doi.org/10.1016/j.cogsc.2019.08.005

Publicado
2025-06-13
Como Citar
Silva, R. S. da, Alovisi, A. M. T., Kurihara, C. H., Rocha Neto, D. P., Lima, N. D., Medeiros, E. S. de, Staut, L. A., & Silva, C. J. da. (2025). Soil phosphorus fractions in response to cropping system, liming, and phosphate fertilization in an expanding sugarcane plantation area. Acta Scientiarum. Agronomy, 47(1), 71726. https://doi.org/10.4025/actasciagron.v47i1.71726

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus