Effects of copper nanoparticle treatment on the properties of hybrid corn seeds

  • Liziane Cassia Carlesso Universidade Comunitária da Região de Chapecó
  • Giovana Feltes Universidade Regional Integrada do Alto Uruguai e das Missões
  • Cristiano Reschke Lajus Universidade Comunitária da Região de Chapecó
  • Carina Rossoni Universidade Lusófona
  • Rosicler Colet Universidade Regional Integrada do Alto Uruguai e das Missões
  • Clarice Steffens Universidade Regional Integrada do Alto Uruguai e das Missões
  • Juliana Steffens Universidade Regional Integrada do Alto Uruguai e das Missões
Palavras-chave: adsorption; concentration of copper; fiber; protein; quality.

Resumo

Corn (Zea mays L.), a vital crop economically and nutritionally, benefits from advancements like copper (Cu) nanoparticles, which are engineered to enhance crop growth and grain quality. This study aimed to assess the morphological, physical, chemical, and quality attributes of various corn hybrids (HB 01: 22S18 TOP2®; HB 02: 20A30 VIPTERA®; HB 03: 20A80 TOP2®; HB 04: 22S18 TOP3®, and HB 05: 20A20 TOP2®) treated with copper nanoparticles (900 mg of Cu L-1). Hybrid HB 04: 22S18 TOP3® exhibited the highest levels of protein, lipids, fiber, and phosphorus, though calcium levels were comparable to other hybrids (p > 0.05). Fatty acid and amino acid profiles remained unchanged. Hybrids not treated with Cu nanoparticles had higher pH levels. The Cu nanoparticles primarily altered the surface, not the interior, of the seeds, with HB 02: 20A30 VIPTERA® showing the highest Cu content. Overall, Cu nanoparticles preserved the physical and chemical properties of the corn grains, confirming their viability for seed treatment.

Downloads

Não há dados estatísticos.

Referências

Assis, F. B., Basso, F. C., Lara, E. C., Raposo, E., Bertipaglia, L. M. A., Fernandes, L. D. O., Rabelo, C. H. S., & Reis, R. A. (2014). Agronomic and chemical characteristics of hybrid corn to ensiling. Semina: Ciências Agrárias, 35(6), 2869-2881. https://doi.org/10.5433/1679-0359.2014v35n6p2869

Bochicchio, R., Sofo, A., Terzano, R., Gattullo, C. E., Amato, M., & Scopa, A. (2015). Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: A new screening technique for studying plant response to metals. Plant Physiology and Biochemistry, 91, 20-27. https://doi.org/https://doi.org/10.1016/j.plaphy.2015.03.010

Brasil. (2009). Regras para análise de sementes. MAPA/SDA.

Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Chapter 7 - Function of nutrients: micronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 191-248). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384905-2.00007-8

Buso, W. H. D., & Silva, L. B. (2018). Use of technology to increase the productivity of corn in Brazil. In M. A. El-Esawi (Ed.), Maize germplasm - Characterization and genetic approaches for crop improvement. IntechOpen. https://doi.org/10.5772/intechopen.70808

Cambrollé, J., García, J. L., Figueroa, M. E., & Cantos, M. (2015). Evaluating wild grapevine tolerance to copper toxicity. Chemosphere, 120, 171-178. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.06.044

Carlesso, L., Lajus, C., Steffens, J., & Steffens, C. (2020). Physiological quality of maize hybrid seeds treated with Copper Nanoparticles. International Journal of Advanced Engineering Research and Science, 7(5), 435-440. https://doi.org/10.22161/ijaers.75.52

Companhia Nacional de Abastecimento [CONAB]. (2023). 12º Levantamento da Safra de Grãos 2023/24. https://www.gov.br/conab/pt-br

Duarte, A. P., Abreu, M. F., Francisco, E. A. B., Gitti, D. C., Barth, G., & Kappes, C. (2019). Reference values of grain nutrient content and removal for corn. Revista Brasileira de Ciência do Solo, 43, 1-12. https://doi.org/10.1590/18069657rbcs20180102

Dubal, Í. T. P., Carvalho, I. R., Pimentel, J. R., Troyjack, C., Szareski, V. J., Jaques, L. B. A., Conte, G. G., Villela, F. A., Aumonde,T. Z., & Pedó, T. (2020). Physical and physiological quality of corn seeds. Research, Society and Development, 9(10), 1-22. https://doi.org/10.33448/rsd-v9i10.8687

Duran, N. M., Savassa, S. M., Lima, R. G., Almeida, E., Linhares, F. S., Van Gestel, C. A. M., & Carvalho, H. W. P. (2017). X-ray Spectroscopy uncovering the effects of Cu based nanoparticle concentration and structure on Phaseolus vulgaris germination and seedling development. Journal of Agricultural and Food Chemistry, 65(36), 7874-7884. https://doi.org/10.1021/acs.jafc.7b03014

Food and Agriculture Organization/World Health Organization [FAO/WHO]. (2001). Codex Alimentarius Commission. Food Additives and Contaminants. FAO/WHO.

Goersch, M. C. Da S., Schäfer, L., Tonial, M., de Oliveira, V. R., Ferraz, A. de B. F., Fachini, J., Silva, J. B., Niekraszewicz, L. A. B., Rodrigues, C. E., Pasquali, G., Dias. J. F., Kist, T. B. L., & Picada, J. N. (2019). Nutritional composition of Eragrostis teff and its association with the observed antimutagenic effects. RSC Advances, 9(7), 3764-3776. https://doi.org/10.1039/C8RA09733J

Hoang, S. A., Nguyen, L. Q., Nguyen, N. H., Tran, C. Q., Nguyen, D. V., Le, N. T., Ha, C. V., Vu, Q. N., & Phan, C. M. (2019). Metal nanoparticles as effective promotors for maize production. Scientific Reports, 9(1), 1-8. https://doi.org/10.1038/s41598-019-50265-2

Instituto Adolfo Lutz [IAL]. (2008). Métodos físico-químicos para análise de alimentos. IAL. https://doi.org/10.1017/CBO9781107415324.004

Jackson, D. I., & Lombard, P. B. (1993). Environmental and management practices affecting grape composition and wine quality--a review. American Journal of Enology and Viticulture, 44(4), 409-430. https://doi.org/10.5344/ajev.1993.44.4.409

Jiménez, J. J., Bernal, J. L., Nozal, M. J., Toribio, L., & Bernal, J. (2009). Profile and relative concentrations of fatty acids in corn and soybean seeds from transgenic and isogenic crops. Journal of Chromatography A, 1216(43), 7288-7295. https://doi.org/10.1016/j.chroma.2009.08.015

Li, Z., Hong, T., Shen, G., Gu, Y., Guo, Y., & Han, J. (2022). Amino acid profiles and nutritional evaluation of fresh sweet–waxy corn from three different regions of China. Nutrients, 14(19), 1-34. https://doi.org/https://doi.org/10.3390/nu14193887

Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), 5580-5585. https://doi.org/10.1021/es800422x

Mutlu, C., Arslan-Tontul, S., Candal, C., Kilic, O., & Erbas, M. (2018). Physicochemical, thermal, and sensory properties of blue corn (Zea mays L.). Journal of Food Science, 83(1), 53-59. https://doi.org/10.1111/1750-3841.14014

Rigo, A. A., Dahmer, A. M., Steffens, C., Steffens, J., & Carrão-Panizzi, M. C. (2015). Characterization of soybean cultivars genetically improved for human consumption. International Journal of Food Engineering, 1(1), 1-7. https://doi.org/10.18178/ijfe.1.1.1-7

Saharan, V., Kumaraswamy, R. V., Choudhary, R. C., Kumari, S., Pal, A., Raliya, R., & Biswas, P. (2016). Cu-Chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry, 64(31), 6148-6155. https://doi.org/10.1021/acs.jafc.6b02239

Saoussem, H., Sadok, B., Habib, K., & Mayer, P. M. (2009). Fatty acid accumulation in the different fractions of the developing corn kernel. Food Chemistry, 117(3), 432-437. https://doi.org/10.1016/j.foodchem.2009.04.038

Shafiq, H., Shani, M. Y., Ashraf, M. Y., De Mastro, F., Cocozza, C., Abbas, S., Ali, N., Zaib-un-Nisa, Tahir, A., Iqbal, M., Khan, Z., Gul, N., & Brunetti, G. (2024). Copper oxide nanoparticles induced growth and physio-biochemical changes in maize (Zea mays L.) in saline soil. Plants, 13(8), 1-20. https://doi.org/10.3390/plants13081080

Silva, K. M. J., Von Pinho, R. G., Von Pinho, É. V. R., Oliveira, R. M., Santos, H. O., & Silva, T. S. (2020). Chemical treatment and size of corn seed on physiological and sanitary quality during storage. Journal of Seed Science, 42, 1-9. https://doi.org/10.1590/2317-1545v42219569

Singh, V., Moreau, R. A., Haken, A. E., Eckhoff, S. R., & Hicks, K. B. (2000). Hybrid variability and effect of growth location on corn fiber yields and corn fiber oil composition. Cereal Chemistry, 77(5), 692-695. https://doi.org/10.1094/CCHEM.2000.77.5.692

Universidade Estadual de Campinas [UNICAMP]. (2011). Tabela Brasileira de Composição de Alimentos – TACO. NEPA/UNICAMP.

United States Department of Agriculture [USDA]. (2021, 4 Oct.). World Corn Production 2020/2021. USDA. http://www.worldagriculturalproduction.com/crops/corn.aspx

Vázquez-Carrillo, M. G., Santiago-Ramos, D., Gaytán-Martínez, M., Morales-Sánchez, E., & Guerrero-Herrera, M. J. (2015). High oil content maize: Physical, thermal and rheological properties of grain, masa, and tortillas. LWT - Food Science and Technology, 60(1), 156-161. https://doi.org/10.1016/j.lwt.2014.07.043

Verdi, N. L., Lajus, C. R., Olias, C., Sauer, A. V., Luz, G. L., Dalcaton, F., & Silva, L. L. (2022). Aspectos agronômicos em híbridos de milho submetidos ao tratamento de sementes com nanopartículas de cobre. In L. Tullio (Org.), Geração e difusão de conhecimentos nas ciências agrárias (pp.139-154). Atena. https://doi.org/10.22533/at.ed.58222180412

Aspectos agronômicos em híbridos de milho submetidos ao tratamento de sementes com nanopartículas de cobre. Universidade Comunitária da Região de Chapecó.

Wang, Z., & Jablonski, J. E. (2016). Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics. Food Additives & Contaminants: Part A, 33(3), 560-573. https://doi.org/10.1080/19440049.2016.1138547

Wang, W., Ren, Y., He, J., Zhang, L., Wang, X., & Cui, Z. (2020). Impact of copper oxide nanoparticles on the germination, seedling growth, and physiological responses in Brassica pekinensis L. Environmental Science and Pollution Research, 27, 31505-31515. https://doi.org/10.1007/s11356-020-09338-3

Zhao, L., Sun, Y., Hernandez-Viezcas, J. A., Hong, J., Majumdar, S., Niu, G., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environmental Science & Technology, 49(5), 2921-2928. https://doi.org/10.1021/es5060226

Publicado
2025-06-13
Como Citar
Carlesso, L. C., Feltes, G., Lajus, C. R., Rossoni, C., Colet, R., Steffens, C., & Steffens, J. (2025). Effects of copper nanoparticle treatment on the properties of hybrid corn seeds. Acta Scientiarum. Agronomy, 47(1), e72076. https://doi.org/10.4025/actasciagron.v47i1.72076
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus