Univariate and multivariate linear relationships among traits in sunflower cultivation
Resumo
Evaluating characteristics in sunflower cultivation through univariate and multivariate selection of agronomic traits and grain yield helps choose cultivars and hybrids, and supports crop breeding studies. Yet, the scientific literature relies on data from limited cultivation environments, potentially undermining result reliability. In this context, this study aimed to evaluate the linear relationships among morphological traits of sunflower in a low-altitude subtropical environment and identify traits that can assist in the indirect selection of cultivars, hybrids, and genotypes in field trials of the national sunflower genotype evaluation network. Data from five experimental years conducted annually between 2017/2018 and 2022/2023 were used. The experiments were conducted at the Federal University of Santa Maria (UFSM). The experimental design consisted of randomized blocks with four replications, considering 34 treatments (genotypes) evaluated over five experimental years, totaling 1,754 plants evaluated during the period. The evaluated traits were plant height (cm), capitulum diameter (cm), thousand-achene mass (g), number of achenes per capitulum, and individual achene yield per plant (g). Subsequently, the relationship among traits was investigated using Pearson correlation (r) and path (cause and effect) analyses. The traits number of achenes per capitulum, thousand-achene mass, and capitulum diameter are positively related. The magnitude of Pearson correlations among evaluated traits changes in an environment with prolonged water deficit conditions. The number of achenes per capitulum and thousand-achene mass have a linear relationship and a direct effect on individual achene yield. Capitulum diameter has a direct effect on the number of achenes per capitulum and can be used to assist in the indirect selection of sunflower genotypes, hybrids, and cultivars.
Downloads
Referências
Abro, T. F., Oad, P. K., Sootaher, J. K., Menghwar, K. K., Soomro, T. A., Shaikh, A. A., & Channa, Z. (2020). Genetic variability and character association between grain yield and oil content traits in sunflower (Helianthus annuus L.). International Journal of Biology and Biotechnology, 17(4), 701-706.
Ahmed, M. M., Akram, M. W., Tahir, M. H. N., Hussain, S. B., Ali, J., Keerio, A. A., & Abbas, A. (2020). Genetics and association of yield contributing characters for achene yield in sunflower (Helianthus annuus L.). Agrobiological Records, 1, 26-30. https://doi.org/10.47278/journal.abr/2020.004
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507
Amorim, E. P., Ramos, N. P., Ungaro, M. R. G., & Kiihl, T. A. M. (2008). Correlations and path analysis in sunflower. Bragantia, 67(2), 307-316. DOI: https://doi.org/10.1590/S0006-87052008000200006
Birck, M., Dalchiavon, F. C., Stasiak, D., Iocca, A. F. S., Hiolanda, R., & Carvalho, C. G. P. (2017). Performance of sunflower cultivars at different seeding periods in central Brazil. Ciência e Agrotecnologia, 41(1), 42-51. DOI: https://doi.org/10.1590/1413-70542017411021216
Borges, F. R. M., Bezerra, F. M. L., Marinho, A. B., Ramos, E. G., & Adriano, J. N. J. (2019). Goat manure fertilization and irrigation on production components of sunflower. Revista Caatinga, 32(1), 211-221. https://doi.org/10.1590/1983-21252019v32n121rc
Braz, M. R. S., & Rossetto, C. A. V. (2010). Acúmulo de nutrientes e rendimento de óleo em plantas de girassol influenciados pelo vigor dos aquênios e pela densidade de semeadura. Semina: Ciências Agrárias, 31(Sup. 1), 1193-1204. https://doi.org/10.5433/1679-0359.2010v31n4Sup1p1193
Carvalho, C. G. P., Ozawa, E. K. M., Amabile, R. F., Godinho, V. D. P. C., Gonçalves, S. L., Ribeiro, J. L., & Seifert, A. L. (2015). Adaptabilidade e estabilidade de genótipos de girassol resistentes a imidazolinonas em cultivos de segunda safra. Revista Brasileira de Ciências Agrárias, 10(1), 1-7. https://doi.org/10.5039/agraria.v10i1a3804
Castiglioni, V. B. R., Balla, A., Castro, C. D., & Silveira, J. D. (1994). Fases de desenvolvimento da planta de girassol. Embrapa Soja. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/445797/1/ doc059.pdf
Castro, C., Castiglioni, V. B. R., Balla, A., Leite, R. M. V. B. C., Karma, D., Mello, H. C., Guedes, L. C. A., & Farias, J. R. B. (1997). A cultura do girassol. Embrapa Soja. https://www.infoteca.cnptia.embrapa.br/handle/doc/445832
Castro, C. D., & Farias, J. D. (2005). Ecofisiologia do girassol. Embrapa Soja. https://www.alice.cnptia.embrapa.br/alice/handle/doc/468448
Castro, C. D., & Leite, R. M. V. B. C. (2018). Main aspects of sunflower production in Brazil. Oilseeds Fats Crops Lipids, 25(1), 1-11. https://doi.org/10.1051/ocl/2017056
Chambó, E. D., Escocard de Oliveira, N. T., Garcia, R. C., Ruvolo-Takasusuki, M. C. C., & de Toledo, V. A. A. (2017). Phenotypic correlation and path analysis in sunflower genotypes and pollination influence on estimates. Open Biological Sciences Journal, 3, 9-15. https://doi.org/10.2174/2352633501703010009
Companhia Nacional de Abastecimento. (2023). Acompanhamento da safra Brasileira de grãos. 6° levantamento da safra 2022/23. CONAB. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos
Companhia Nacional de Abastecimento. (2022). Acompanhamento da safra Brasileira de grãos. 9° levantamento da safra 2021/22. CONAB. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos
Dalchiavon, F. C., Carvalho, C. G. P., Amabile, R. F., Godinho, V. P. C., Ramos, N. P., & Anselmo, J. L. (2016). Características agronômicas e suas correlações em híbridos de girassol adaptados à segunda safra. Pesquisa Agropecuária Brasileira, 51(11), 1806-1812. https://doi.org/10.1590/S0100-204X2016001100002
Darvishzadeh, R., Maleki, H. H., & Sarrafi, A. (2011). Path analysis of the relationships between yield and some related traits in diallel population of sunflower ('Helianthus annuus' L.) under well-watered and water-stressed conditions. Australian Journal of Crop Science, 5(6), 674-680.
Dutra, C. C., Prado, E. A. F., Paim, L. R., & Scalon, S. P. Q. (2012). Development of sunflower plants under different conditions of water supply. Semina: Ciências Agrárias, 33(1), 2657-2667. https://doi.org/10.5433/1679-0359.2012v33Supl1p2657
Food and Agriculture Organization. (2020). Crops and livestock products. FAO Statistical Databases & Data-Sets. http://www.fao.org/faostat/en/#data/TP
Follmann, D. N., Cargnelutti Filho, A., Santos, M. S., Costa, V. O., Plautz, É. N., Scopel, J. V. F., Bamberg, D. M., Engel, G. H., Olivoto, T., Wartha, C. A., & Nardino, M. (2019). Correlations and path analysis in sunflower grown at lower elevations. Journal of Agricultural Science, 11(2), 445-453. https://doi.org/10.5539/jas.v11n2p445
Ghaffari, M., Davaji, A. M. N. R., & Ghadimi, F. N. (2019). Oil yield determinant of sunflower in climatically different regions of Iran. Bulgarian Journal of Agricultural Science, 25(1), 67-71.
Hadley, W., Romain, F., LioneL, H., Kirill, M. (2021). dplyr: A grammar of data manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage.
Hiolanda, R., Dalchiavon, F. C., Biezus, E., Iocca, A. F. S., & Carvalho, C. G. P. (2018). Contributo para o estudo do desempenho agronómico de híbridos na principal região produtora de girassol no Brasil (Chapadão do Parecis). Revista de Ciências Agrárias, 41(1), 14-22. https://doi.org/10.19084/RCA17159
Mendiburu, F., & Yaseen, M. (2020). Agricolae: Statistical procedures for agricultural research (Version 1.4.0). R Foundation for Statistical Computing. https://doi.org/10.32614/CRAN.package.agricolae
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis (6th ed.). John Wiley & Sons.
Naik, G. H., & Ghodke, M. K. (2021). Correlation and path analysis studies in multihead inbred lines of sunflower (Helianthus annuus L.). Journal of Pharmacognosy and Phytochemistry, 10(1), 707-709.
Neves, J. M. G., Aquino, L. A., Berger, P. G., Neves, J. C. L., Rocha, G. C., & Barbosa, E. A. (2019). Silicon and boron mitigate the effects of water deficit on sunflower. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(3), 175-182. https://doi.org/10.1590/1807-1929/agriambi.v23n3p175-182
Nobre, D. A. C., Costa, C. A., Brandão Junior, D. S., Resende, J. C. F. D., & Flávio, N. S. D. S. (2015). Qualidade das sementes de girassol de diferentes genótipos. Ciência Rural, 45(10), 1729-1735. https://doi.org/10.1590/0103-8478cr20120863
Nobre, D. A. C., Silva, F. C. S., Guimarães, J. F. R., Resende, J. C. F., & Macedo, W. R. (2018). Análise de trilha e correlação canônica nos componentes do desempenho de girassol. The Journal of Engineering and Exact Sciences, 4(3), 364-369. https://doi.org/10.18540/jcecvl4iss3pp0364-0369
Oliveira, A. B., Do Vale, J. C., & Guimarães, M. A. (2022). A cultura do girassol. Editora UFV.
Oliveira, S. L., Gomes Filho, A., Soares, D. P., Moreira, E. F., Chaga, L. M., Silva, G. G., & Gomes, P. L. (2017). Dissimilaridade fenotípica em genótipos de girassol cultivados no norte de Minas Gerais. Agri-Environmental Sciences, 3(2), 19-28. https://doi.org/10.36725/agries.v3i2.434
Olivoto, T., Lúcio, A. D. C., Souza, V. Q., Nardino, M., Diel, M. I., Sari, B. G., Krysczun, D. K., Meira, D., & Meier, C. (2018). Confidence interval width for pearson’s correlation coefficient: A Gaussian‐independent estimator based on sample size and strength of association. Agronomy Journal, 110(2), 503-510. https://doi.org/10.2134/agronj2017.09.0566
Olivoto, T., & Lúcio, A. D. C. (2020). metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6), 783-789. https://doi.org/10.1111/2041-210X.13384
Qadir, M., Hussain, A., Hamayun, M., Shah, M., Iqbal, A., Husna, & Murad, W. (2020). Phytohormones producing rhizobacterium alleviates chromium toxicity in Helianthus annuus L. by reducing chromate uptake and strengthening antioxidant system. Chemosphere, 258, 127386. https://doi.org/10.1016/j.chemosphere.2020.127386
Radić, V., Balalić, I., Jaćimović, G., Krstić, M., Jocković, M., & Jocić, S. (2021). A study of correlations and path analyses of some traits in sunflower parental lines. Ratarstvo i povrtarstvo, 58(1), 7-13. https://doi.org/10.5937/ratpov58-26782
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Reavanth, T., Manivannan, N., Sasikala, R., & Rajendran, L. (2022). Genetic variability and association analysis for yield and its component traits in sunflower (Helianthus annuus L.). Madras Agricultural Journal, 109(10-12), 56-60. https://doi.org/10.29321/MAJ.10.000707
Riaz, A., Iqbal, M. S., Fiaz, S., Chachar, S., Amir, R. M., & Riaz, B. (2020). Multivariate analysis of superior Helianthus annuus L. genotypes related to metric traits. Sains Malaysiana, 49(3), 461-470. http://dx.doi.org/10.17576/jsm-2020-4903-01
Riaz, A., Nadeem Tahir, M. H., Rizwan, M., Fiaz, S., Chachar, S., Razzaq, K., Riaz, B., & Sadia, H. (2019). Developing a selection criterion using correlation and path coefficient analysis in sunflower (Helianthus annuus L.). Helia, 42(70), 85-99. https://doi.org/10.1515/helia-2017-0031
Sahar, W. A., Sipio, W. D., Abro, T. F., Keerio, J. M., Sipio, N., Unar, I. H., Bhutto, A. R., Memon, M., & Kakar, B. K. (2024). The correlation and regression analysis in different genotypes of sunflower (Helianthus Annuus L.). Pakistan Journal of Biotechnology, 21(1), 172-177. http://doi.org/10.34016/pjbt.2024.21.01.893
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo Filho, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018). Brazilian soil classification system (5th ed.). Embrapa.
Santos, V. J. N., Oliveira, S. L., Donato, G. A., Monteiro, A. L. M., Castro, P. I. P., Carvalho, C. G. P., Gomes Filho, A., & Correia, C. O. (2021). Parâmetros genéticos e correlações de caracteres agronômicos de genótipos de girassol. Acta Biológica Catarinense, 8(4), 20-32. https://doi.org/10.21726/abc.v8i4.1649
Silva, A. R. A. D., Bezerra, F. M. L., Sousa, C. C. M. D., Pereira Filho, J. V., & Freitas, C. A. S. D. (2011). Desempenho de cultivares de girassol sob diferentes lâminas de irrigação no Vale do Curu, CE. Revista Ciência Agronômica, 42, 57-64. https://doi.org/10.1590/S1806-66902011000100008
Shojaei, S. H., Ansarifard, I., Mostafavi, K., Bihamta, M. R., & Zabet, M. (2022). GT biplot analysis for yield and related traits in some sunflower (Helianthus annuus L.) genotypes. Journal of Agriculture and Food Research, 10, 1-8. https://doi.org/10.1016/j.jafr.2022.100370
Soares, M. M., Freitas, C. D. M., Oliveira, F. S., Mesquita, H. C., Silva, T. S., & Silva, D. V. (2019). Effects of competition and water deficiency on sunflower and weed growth. Revista Caatinga, 32(2), 318-328. https://doi.org/10.1590/1983-21252019v32n204rc
Taiyun, W., & Viliam, S. (2021). R package 'corrplot': Visualization of a correlation matrix (Version 0.90). https://github.com/taiyun/corrplot
United States Department of Agriculture. (2023). World agricultural production: Circular series WAP (3rd ed.). USDA. https://apps.fas.usda.gov/psdonline/circulars/production.pdf
Valadão, F. C. A., Valadão Júnior, D. D., Batista, R. F., Paula, V. R. R., Dalchiavon, F. C., Silva, J. L., & Castro Alves, T. (2020). Produtividade do girassol em função do manejo da adubação nitrogenada. Brazilian Journal of Development, 6(10), 84197-84213. https://doi.org/10.34117/bjdv6n10-744
Copyright (c) 2025 Anderson Crestani Pereira, Alessandro Dal' Col Lucio, Diego Nicolau Follmann, Emilso Damm dos Santos, Fernanda Maria Mieth, Estéfano Antonio Moresco, Guilherme Bergeijer da Rosa (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.