Statistical modeling of vigor ratings in ruzigrass breeding

Palavras-chave: Urochloa ruziziensis; selection efficiency; Box-Cox transformation; threshold model; mixed model approach; forage breeding.

Resumo

Ruzigass (Urochloa ruziziensis) is a forage crop with high agronomic and nutritional value. Plant breeders often assess ruzigrass phenotypic traits via vigor ratings. The analyses of these categorical data often fail to meet the usual statistical assumptions. In this study, we compared four fittings of linear models for vigor rating analyses: i) a linear mixed model for the original scale (LMM), ii) a linear mixed model for a Box–Cox transformed scale (BCLMM), iii) a multinomial generalized mixed model using a probit link function, also known as threshold model (GLMM), and iv) a hierarchical Bayesian model, also referred to as a Bayesian threshold model (HBM). Additionally, biomass yield was assessed, and the indirect selection of high-performing genotypes was evaluated. The experimental design included 2,204 ruzigrass genotypes randomized into augmented blocks. Six graders visually assessed each plot using a rating scale. Fitting methods were sampled from three scenarios, employing one, three, or six graders. A nonnull genetic variance component was detected for vigor and biomass yield traits. Except for BCLMM, the methods for analyzing vigor ratings were correlated. The correlations and coincidence indices for selecting genotypes increased with the number of graders. The analysis of vigor ratings under Gaussian approximations is riskier when a single grader is used to evaluate genotypes. The GLMM and HBM perform similarly and are more recommended and suitable analyses of vigor ratings when selecting high-performing ruzigrass genotypes.

Downloads

Não há dados estatísticos.

Referências

Atkins, R. E. (1964). Visual selection for grain yield in barley. Crop Science, 4(5), 494-497. https://doi.org/10.2135/cropsci1964.0011183X000400050018x

Agresti, A. (2002). Categorical data analysis (2nd ed.). John Wiley & Sons.

Agresti, A. (2007). An introduction to categorical data analysis (2nd ed.). John Wiley & Sons.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01

Besbes, B., Ducrocq, V., Foulley, J.-L., Protais, M., Tavernier, A., Tixierboichard, M., & Beautnont, C. (1993). Box-Cox transformation of egg-production traits of laying hens to improve genetic parameter estimation and breeding evaluation. Livestock Production Science, 33(3/4), 313-326. https://doi.org/10.1016/0301-6226(93)90010-F

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology Evolution, 24(3), 127-135. https://doi.org/10.1016/j.tree.2008.10.008

Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, 26(2), 211-243. https://doi.org/10.1111/J.2517-6161.1964.TB00553.X

Burton, G. W. (1982). Improved recurrent restricted phenotypic selection increases Bahiagrass forage yields. Crop Science, 22(5), 1058–1061. https://doi.org/10.2135/cropsci1982.0011183x002200050040x

Christensen, R. H. B. (2019). Ordinal - Regression models for ordinal data. R package version 2019.12-10.

Corrêa, F. M., Silva, J. W., Ferreira, D. F., & Bueno Filho, J. S. S. (2016). Bayesian algorithms for analysis of categorical ordinal data. Brazilian Journal of Biometrics, 34(4), 597-620.

Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation variety trials with correlated data. Journal of Agricultural Biological and Environmental Statistics, 11, 381-393. https://doi.org/10.1198/108571106X154443

Dias, J. A., Rosado, L. R., Benites, F., Souza Sobrinho, F., Nunes, J. A. R., & Gonçalves, F. M. A. (2022). Efficiency of indirect selection for green biomass production of Urochloa ruziziensis. Crop Breeding and Applied Biotechnology, 22(2), 1-8. https://doi.org/10.1590/1984-70332022v22n2a22

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Longman.

Fonseca, J. M. O., Nunes, J. A. R., Gonçalves, F. M. A., Souza Sobrinho, F., Benites, F. R. G., & Teixeira, D. H. L. (2020). Predictive approach to optimize the number of visual graders for indirect selection of high-yielding Urochloa ruziziensis genotypes. Crop Breeding and Applied Biotechnology, 20(3), 1-7. https://doi.org/10.1590/1984-70332020v20n3a48

Gianola, D., & Fernando, R. L. (1986). Bayesian methods in animal breeding Theory. Journal of Animal Science, 63(1), 217-244. https://doi.org/10.2527/jas1986.631217x

Gianola, D., & Foulley, J. (1983). Sire evaluation for ordered categorical data with a threshold model. Genetics Selection Evolution, 15(2), 201-224. https://doi.org/10.1186/1297-9686-15-2-201

Gouveia, B. T., Mateus, R. G., Barrios, S. C. L., Valle, C. B., Bueno Filho, J. S. S., Rios, E. F., Dias, A. M., & Nunes, J. A. R. (2022). Combining ability and selection for agronomic and nutritional traits in Urochloa spp. hybrids. Grass and Forage Science, 77(1), 33-44. https://doi.org/10.1111/gfs.12555

Gouy, M., Rousselle, Y., Bastianelli, D., Lecomte, P., Bonnal, L., Roques, D., Efile, J.-C., Rocher, S., Daugrois, J., Toubi , L., Nabeneza , S., Hervouet, C., Telismart, T., Denis, M., Thong-Chane, A., Glaszmann, J. C., Hoarau, J.-Y., Nibouche, S., & Costet, L. (2013). Experimental assessment of the accuracy of genomic selection in sugarcane. Theoretical and Applied Genetics, 126, 2575-2586. https://doi.org/10.1007/s00122-013-2156-z

Hadfield, J. D. (2010). MCMC Methods for multi-response generalized linear mixed models: The MCMCglmm R Package. Journal of Statistical Software, 33(2), 1-22. https://doi.org/10.18637/jss.v033.i02

Hamblin, J., & Zimmermann, M. J. O. (1986). Breeding common bean for yield in mixtures. In J. Janick (Ed.), Plant Breeding Reviews (v. 4, pp. 245-272). Wiley.

Henderson, C. R. (1984). Applications of linear models in animal breeding. University of Guelph.

Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434-446. https://doi.org/10.1016/j.jml.2007.11.007

Jansen, J. (1991). Fitting regression models to ordinal data. Biometrical Journal, 33(7), 807-815. https://doi.org/10.1002/bimj.4710330707

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13

Marcelino, L. L., Moreira, G. R., Souza Sobrinho, F., Almeida, M. I. V., Cóser, A. C., Cunha, G. M., & Benites, F. R. G. (2020). Nutritive value of improved populations Brachiaria ruziziensis. Semina: Ciências Agrárias, 41(1), 323-334. https://doi.org/10.5433/1679-0359.2020v41n1p323

Marcon, F., Brugnoli, E. A., Nunes, J. A. R., Gutierrez, V. A., Martínez, E. J., & Acuña, C. A. (2021). Evaluating general combining ability for agromorphological traits in tetraploid bahiagrass. Euphytica, 217, 1-11. https://doi.org/10.1007/s10681-021-02942-5

McCulloch, C. E., & Searle, S. R. (2004). Generalized, linear, and mixed models. John Wiley & Sons.

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, 135(3), 370-384. https://doi.org/10.2307/2344614

Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the theory of statistics (3rd ed.). McGraw Hill.

Nouhoun, Z., Traoré, T. C., Sawadogo, E. T. B. P., Ayantunde, A., Prasad, K. V. S. V., Blummel, M., Balehegn, M., Rios, E., Dubeux, J. C., Boote, K. J., & Adesogan, A. T. (2022). Herbage accumulation and nutritive value of cultivar Mulato II, Congo grass, and Guinea grass cultivar C1 in a subhumid zone of West Africa. Agronomy Journal, 114(1), 138-147. https://doi.org/10.1002/agj2.20861

Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545-554. https://doi.org/10.1093/biomet/58.3.545

Pereira, A. V., Souza Sobrinho, F., Valle, C. B., Lédo, F. J. S., Botrel, M. A., Oliveira, J. S., & Xavier, D. F. (2005) Selection of interspecific Brachiaria hybrids to intensify milk production on pastures. Crop Breeding Applied Biotechnology, 5(1), 99-104. https://doi.org/10.12702/1984-7033.v05n01a13

Pinheiro, J. C., & Chao, E. C. (2006). Efficient laplacian and adaptive gaussian quadrature algorithms for multilevel generalized linear mixed models. Journal of Computational and Graphical Statistics, 15(1), 58-81. https://doi.org/10.1198/106186006X96962

Price, D. L., & Casler, M. D. (2014). Divergent selection for secondary traits in upland tetraploid switchgrass and effects on sward biomass yield. Bioenergy Research, 7, 329-337. https://doi.org/10.1007/s12155-013-9374-8

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Riday, H. (2009). Correlations between visual biomass scores and forage yield in space planted red clover (Trifolium pratense L.) breeding nurseries. Euphytica, 170(3), 339-345. https://doi.org/10.1007/s10681-009-9991-7

Schmidt, P., Hartung, J., Bennewitz, J., & Piepho, H.-P. (2019). Heritability in plant breeding on a genotype-difference basis. Genetics, 212(4), 991-1008. https://doi.org/10.1534/genetics.119.302134

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (Complete Samples). Biometrika, 52(3/4), 591-611. https://doi.org/10.2307/2333709

Silva, D. M., Moraes, J. C., Auad, A. M., Fonseca, M. G., & Souza Sobrinho, F. (2013). Genetic variability of Brachiaria ruziziensis clones to Collaria oleosa (Hemiptera: Miridae) based on leaf injuries. American Journal of Plant Sciences, 4(12), 2418-2424. https://doi.org/10.4236/ajps.2013.412300

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Oliveira, J. B., Coelho, M. R., ... Cunha, T. J. F. (2006). Sistema brasileiro de classificação de solos. Embrapa.

Souza Sobrinho, F., Auad, A. M., & Lédo, F. J. S. (2010). Genetic variability in Brachiaria ruziziensis for resistance to spittlebugs. Crop Breeding and Applied Biotechnology, 10(1), 83-88.

Stroup, W. W. (2015). Rethinking the analysis of non-normal data in plant and soil science. Agronomy Journal, 107(2), 811-827. https://doi.org/10.2134/agronj2013.0342

Teixeira, D. H. L., Gonçalves, F. M. A., Nunes, J. A. R., Souza Sobrinho, F., Benites, F. R. G., & Dias, K. O. G. (2020). Visual selection of Urochloa ruziziensis genotypes for green biomass yield. Acta Scientiarum. Agronomy, 42(1), 1-8. https://doi.org/10.4025/actasciagron.v42i1.42444

Timbó, A. L. O., Souza, P. N. C., Pereira, R. C., Nunes, J. D., Pinto, J. E. B. P., Souza Sobrinho, F., & Davide, L. C. (2014). Obtaining tetraploid plants of Urochloa ruziziensis (Brachiaria ruziziensis). Revista Brasileira Zootecnia, 43(3), 127-131. https://doi.org/10.1590/S1516-35982014000300004

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer.

Whitman, B., Iannone, B. V., Kruse, J. K., Unruh, J. B., & Dale, A. G. (2022). Cultivar blends: A strategy for creating more resilient warm season turfgrass lawns. Urban Ecosystems, 25, 797-810. https://doi.org/10.1007/s11252-021-01195-3

Publicado
2025-09-02
Como Citar
Fonseca, J. M. O., Gonçalves, F. M. A., Souza Sobrinho, F., Bueno Filho, J. S. de S., Benites, F. R. G., Teixeira, D. H. L., & Nunes, J. A. R. (2025). Statistical modeling of vigor ratings in ruzigrass breeding. Acta Scientiarum. Agronomy, 47(1), e72493. https://doi.org/10.4025/actasciagron.v47i1.72493
Seção
Biometria, Modelagem e Estatística

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus