Statistical modeling of vigor ratings in ruzigrass breeding
Resumo
Ruzigass (Urochloa ruziziensis) is a forage crop with high agronomic and nutritional value. Plant breeders often assess ruzigrass phenotypic traits via vigor ratings. The analyses of these categorical data often fail to meet the usual statistical assumptions. In this study, we compared four fittings of linear models for vigor rating analyses: i) a linear mixed model for the original scale (LMM), ii) a linear mixed model for a Box–Cox transformed scale (BCLMM), iii) a multinomial generalized mixed model using a probit link function, also known as threshold model (GLMM), and iv) a hierarchical Bayesian model, also referred to as a Bayesian threshold model (HBM). Additionally, biomass yield was assessed, and the indirect selection of high-performing genotypes was evaluated. The experimental design included 2,204 ruzigrass genotypes randomized into augmented blocks. Six graders visually assessed each plot using a rating scale. Fitting methods were sampled from three scenarios, employing one, three, or six graders. A nonnull genetic variance component was detected for vigor and biomass yield traits. Except for BCLMM, the methods for analyzing vigor ratings were correlated. The correlations and coincidence indices for selecting genotypes increased with the number of graders. The analysis of vigor ratings under Gaussian approximations is riskier when a single grader is used to evaluate genotypes. The GLMM and HBM perform similarly and are more recommended and suitable analyses of vigor ratings when selecting high-performing ruzigrass genotypes.
Downloads
Referências
Atkins, R. E. (1964). Visual selection for grain yield in barley. Crop Science, 4(5), 494-497. https://doi.org/10.2135/cropsci1964.0011183X000400050018x
Agresti, A. (2002). Categorical data analysis (2nd ed.). John Wiley & Sons.
Agresti, A. (2007). An introduction to categorical data analysis (2nd ed.). John Wiley & Sons.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Besbes, B., Ducrocq, V., Foulley, J.-L., Protais, M., Tavernier, A., Tixierboichard, M., & Beautnont, C. (1993). Box-Cox transformation of egg-production traits of laying hens to improve genetic parameter estimation and breeding evaluation. Livestock Production Science, 33(3/4), 313-326. https://doi.org/10.1016/0301-6226(93)90010-F
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology Evolution, 24(3), 127-135. https://doi.org/10.1016/j.tree.2008.10.008
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, 26(2), 211-243. https://doi.org/10.1111/J.2517-6161.1964.TB00553.X
Burton, G. W. (1982). Improved recurrent restricted phenotypic selection increases Bahiagrass forage yields. Crop Science, 22(5), 1058–1061. https://doi.org/10.2135/cropsci1982.0011183x002200050040x
Christensen, R. H. B. (2019). Ordinal - Regression models for ordinal data. R package version 2019.12-10.
Corrêa, F. M., Silva, J. W., Ferreira, D. F., & Bueno Filho, J. S. S. (2016). Bayesian algorithms for analysis of categorical ordinal data. Brazilian Journal of Biometrics, 34(4), 597-620.
Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation variety trials with correlated data. Journal of Agricultural Biological and Environmental Statistics, 11, 381-393. https://doi.org/10.1198/108571106X154443
Dias, J. A., Rosado, L. R., Benites, F., Souza Sobrinho, F., Nunes, J. A. R., & Gonçalves, F. M. A. (2022). Efficiency of indirect selection for green biomass production of Urochloa ruziziensis. Crop Breeding and Applied Biotechnology, 22(2), 1-8. https://doi.org/10.1590/1984-70332022v22n2a22
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Longman.
Fonseca, J. M. O., Nunes, J. A. R., Gonçalves, F. M. A., Souza Sobrinho, F., Benites, F. R. G., & Teixeira, D. H. L. (2020). Predictive approach to optimize the number of visual graders for indirect selection of high-yielding Urochloa ruziziensis genotypes. Crop Breeding and Applied Biotechnology, 20(3), 1-7. https://doi.org/10.1590/1984-70332020v20n3a48
Gianola, D., & Fernando, R. L. (1986). Bayesian methods in animal breeding Theory. Journal of Animal Science, 63(1), 217-244. https://doi.org/10.2527/jas1986.631217x
Gianola, D., & Foulley, J. (1983). Sire evaluation for ordered categorical data with a threshold model. Genetics Selection Evolution, 15(2), 201-224. https://doi.org/10.1186/1297-9686-15-2-201
Gouveia, B. T., Mateus, R. G., Barrios, S. C. L., Valle, C. B., Bueno Filho, J. S. S., Rios, E. F., Dias, A. M., & Nunes, J. A. R. (2022). Combining ability and selection for agronomic and nutritional traits in Urochloa spp. hybrids. Grass and Forage Science, 77(1), 33-44. https://doi.org/10.1111/gfs.12555
Gouy, M., Rousselle, Y., Bastianelli, D., Lecomte, P., Bonnal, L., Roques, D., Efile, J.-C., Rocher, S., Daugrois, J., Toubi , L., Nabeneza , S., Hervouet, C., Telismart, T., Denis, M., Thong-Chane, A., Glaszmann, J. C., Hoarau, J.-Y., Nibouche, S., & Costet, L. (2013). Experimental assessment of the accuracy of genomic selection in sugarcane. Theoretical and Applied Genetics, 126, 2575-2586. https://doi.org/10.1007/s00122-013-2156-z
Hadfield, J. D. (2010). MCMC Methods for multi-response generalized linear mixed models: The MCMCglmm R Package. Journal of Statistical Software, 33(2), 1-22. https://doi.org/10.18637/jss.v033.i02
Hamblin, J., & Zimmermann, M. J. O. (1986). Breeding common bean for yield in mixtures. In J. Janick (Ed.), Plant Breeding Reviews (v. 4, pp. 245-272). Wiley.
Henderson, C. R. (1984). Applications of linear models in animal breeding. University of Guelph.
Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434-446. https://doi.org/10.1016/j.jml.2007.11.007
Jansen, J. (1991). Fitting regression models to ordinal data. Biometrical Journal, 33(7), 807-815. https://doi.org/10.1002/bimj.4710330707
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13
Marcelino, L. L., Moreira, G. R., Souza Sobrinho, F., Almeida, M. I. V., Cóser, A. C., Cunha, G. M., & Benites, F. R. G. (2020). Nutritive value of improved populations Brachiaria ruziziensis. Semina: Ciências Agrárias, 41(1), 323-334. https://doi.org/10.5433/1679-0359.2020v41n1p323
Marcon, F., Brugnoli, E. A., Nunes, J. A. R., Gutierrez, V. A., Martínez, E. J., & Acuña, C. A. (2021). Evaluating general combining ability for agromorphological traits in tetraploid bahiagrass. Euphytica, 217, 1-11. https://doi.org/10.1007/s10681-021-02942-5
McCulloch, C. E., & Searle, S. R. (2004). Generalized, linear, and mixed models. John Wiley & Sons.
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, 135(3), 370-384. https://doi.org/10.2307/2344614
Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the theory of statistics (3rd ed.). McGraw Hill.
Nouhoun, Z., Traoré, T. C., Sawadogo, E. T. B. P., Ayantunde, A., Prasad, K. V. S. V., Blummel, M., Balehegn, M., Rios, E., Dubeux, J. C., Boote, K. J., & Adesogan, A. T. (2022). Herbage accumulation and nutritive value of cultivar Mulato II, Congo grass, and Guinea grass cultivar C1 in a subhumid zone of West Africa. Agronomy Journal, 114(1), 138-147. https://doi.org/10.1002/agj2.20861
Patterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545-554. https://doi.org/10.1093/biomet/58.3.545
Pereira, A. V., Souza Sobrinho, F., Valle, C. B., Lédo, F. J. S., Botrel, M. A., Oliveira, J. S., & Xavier, D. F. (2005) Selection of interspecific Brachiaria hybrids to intensify milk production on pastures. Crop Breeding Applied Biotechnology, 5(1), 99-104. https://doi.org/10.12702/1984-7033.v05n01a13
Pinheiro, J. C., & Chao, E. C. (2006). Efficient laplacian and adaptive gaussian quadrature algorithms for multilevel generalized linear mixed models. Journal of Computational and Graphical Statistics, 15(1), 58-81. https://doi.org/10.1198/106186006X96962
Price, D. L., & Casler, M. D. (2014). Divergent selection for secondary traits in upland tetraploid switchgrass and effects on sward biomass yield. Bioenergy Research, 7, 329-337. https://doi.org/10.1007/s12155-013-9374-8
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Riday, H. (2009). Correlations between visual biomass scores and forage yield in space planted red clover (Trifolium pratense L.) breeding nurseries. Euphytica, 170(3), 339-345. https://doi.org/10.1007/s10681-009-9991-7
Schmidt, P., Hartung, J., Bennewitz, J., & Piepho, H.-P. (2019). Heritability in plant breeding on a genotype-difference basis. Genetics, 212(4), 991-1008. https://doi.org/10.1534/genetics.119.302134
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (Complete Samples). Biometrika, 52(3/4), 591-611. https://doi.org/10.2307/2333709
Silva, D. M., Moraes, J. C., Auad, A. M., Fonseca, M. G., & Souza Sobrinho, F. (2013). Genetic variability of Brachiaria ruziziensis clones to Collaria oleosa (Hemiptera: Miridae) based on leaf injuries. American Journal of Plant Sciences, 4(12), 2418-2424. https://doi.org/10.4236/ajps.2013.412300
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Oliveira, J. B., Coelho, M. R., ... Cunha, T. J. F. (2006). Sistema brasileiro de classificação de solos. Embrapa.
Souza Sobrinho, F., Auad, A. M., & Lédo, F. J. S. (2010). Genetic variability in Brachiaria ruziziensis for resistance to spittlebugs. Crop Breeding and Applied Biotechnology, 10(1), 83-88.
Stroup, W. W. (2015). Rethinking the analysis of non-normal data in plant and soil science. Agronomy Journal, 107(2), 811-827. https://doi.org/10.2134/agronj2013.0342
Teixeira, D. H. L., Gonçalves, F. M. A., Nunes, J. A. R., Souza Sobrinho, F., Benites, F. R. G., & Dias, K. O. G. (2020). Visual selection of Urochloa ruziziensis genotypes for green biomass yield. Acta Scientiarum. Agronomy, 42(1), 1-8. https://doi.org/10.4025/actasciagron.v42i1.42444
Timbó, A. L. O., Souza, P. N. C., Pereira, R. C., Nunes, J. D., Pinto, J. E. B. P., Souza Sobrinho, F., & Davide, L. C. (2014). Obtaining tetraploid plants of Urochloa ruziziensis (Brachiaria ruziziensis). Revista Brasileira Zootecnia, 43(3), 127-131. https://doi.org/10.1590/S1516-35982014000300004
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer.
Whitman, B., Iannone, B. V., Kruse, J. K., Unruh, J. B., & Dale, A. G. (2022). Cultivar blends: A strategy for creating more resilient warm season turfgrass lawns. Urban Ecosystems, 25, 797-810. https://doi.org/10.1007/s11252-021-01195-3
Copyright (c) 2025 Jales Mendes Oliveira Fonseca, Flavia Maria Avelar Gonçalves, Fausto Souza Sobrinho, Júlio Sílvio de Souza Bueno Filho, Flávio Rodrigo Gandolfi Benites, Davi Henrique Lima Teixeira, José Airton Rodrigues Nunes (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.