Use of visibility graphs for analysis of computed tomography soil images
Resumo
A complex network analysis of three-dimensional soil images obtained by X-ray computed tomography (CT) was employed to analyze the morphological properties of soil under different vegetation covers. This study quantitatively assessed changes in the three-dimensional soil structure due to disturbances caused by sugarcane management techniques. We used CT images of soil covered by the Atlantic Forest and sugarcane with 624,100 voxel columns each to examine topological indices of the networks generated from the vertical lines of the CT images using the visibility graph (VG) method. The VG method successfully described the changes in the structure of the soil samples by comparing the CT images and may be used to quantify soil degradation. The topological indices clustering coefficient, average shortest path, and average degree of the VG network described the communication between soil structural units, pore continuity, and the distribution of paths between pores. We found strong correlations between the phenomenological aspects and the topological descriptors of the generated network, especially for the average degree. This index best highlighted the difference between the samples, revealing greater heterogeneity in the Atlantic Forest sample compared to the sugarcane sample. These correlations indicate that the complexity of the networks of 3D soil images is related to physical properties, enabling quantification of the degradation of soil morphological properties.
Downloads
Referências
Aguiar, D., Menezes, R. S. C., Antonino, A. C. D., Stosic, T., Tarquis, A. M., & Stosic, B. (2023). Quantifying soil complexity using Fisher Shannon method on 3D X-ray computed tomography scans. Entropy, 25(10), 1-16. https://doi.org/10.3390/e25101465
Aon, M. A., Sarena, D. E., Burgos, J. L., & Cortassa, S. (2001). (Micro) biological, chemical and physical properties of soils subjected to conventional or no-till management: An assessment of their quality status. Soil and Tillage Research, 60(3-4), 173-186. https://doi.org/10.1016/S0167-1987(01)00190-8
Barlow, J., Lennox, G. D., Ferreira, J., Berenguer, E., Lees, A. C., Nally, R. M., Thomson, J. R., Ferraz, S. F. B., Louzada, J., Oliveira, V. H. F., Parry, L., Solar, R. R. C., Vieira, I. C. G., Aragão, L. E. O. C., Begotti, R. A., Braga, R. F., Cardoso, T. M., Oliveira Junior, R. C., Souza Junior, C. M., … Gardner, T. A. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535, 144-147. https://doi.org/10.1038/nature18326
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4-5), 175-308. https://doi.org/10.1016/j.physrep.2005.10.009
Bollobás, B. (2013). Modern graph theory (v. 184). Springer Science & Business Media.
Bordonal, R. O., Carvalho, J. L. N., Lal, R., Figueiredo, E. B., Oliveira, B. G., & La Scala Jr., N. (2018). Sustainability of sugar cane production in Brazil. A review. Agronomy for Sustainable Development, 38(13), 1-23. https://doi.org/10.1007/s13593-018-0490-x
Borges, L. P. F., Moraes, R. M., Crestana, S., & Cavalcante, A. L. B. (2019). Geometric features and fractal nature of soil analyzed by X-ray microtomography image processing. International Journal of Geomechanics, 19(8). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001464
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mader, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry, 120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Carter, M. R. (2004). Researching structural complexity in agricultural soils. Soil and Tillage Research, 79(1), 1-6. https://doi.org/10.1016/j.still.2004.04.001
Cherubin, M. R., Franco, A. L. C., Cerri, C. E. P., Silva Oliveira, D. M., Davies, C. A., & Cerri, C. C. (2015). Sugar cane expansion in Brazilian tropical soils-Effects of land use change on soil chemical attributes. Agriculture, Ecosystems & Environment, 211, 173-184. https://doi.org/10.1016/j.agee.2015.06.006
Creamer, R. E., Barel, J. M., Bongiorno, G., & Zwetsloot, M. J. (2022). The life of soils: Integrating the who and how of multifunctionality. Soil Biology and Biochemistry, 166, 1-15. https://doi.org/10.1016/j.soilbio.2022.108561
Companhia Nacional de Abastecimento [CONAB]. (2023). Acompanhamento da safra brasileira de cana-de-açúcar – Safra 2022/23 - Quarto levantamento. CONAB.
Das, A., Lyngdoh, D., Ghosh, P. K., Lal, R., Layek, J., & Idapuganti, R. G. (2018). Tillage and cropping sequence effect on physico-chemical and biological properties of soil in Eastern Himalayas, India. Soil and Tillage Research, 180, 182-193. https://doi.org/10.1016/j.still.2018.03.005
Feng, Y., Wang, J., Bai, Z., Reading, L., & Jing, Z. (2020). Three-dimensional quantification of macropore networks of different compacted soils from opencast coal mine area using X-ray computed tomography. Soil and Tillage Research, 198, 104567. https://doi.org/10.1016/j.still.2019.104567
Franco, A. L. C., Bartz, M. L. C., Cherubin, M. R., Baretta, D., Cerri, C. E. P., Feigl, B. J., Wall, D. H., Davies, C. A., Cerri, C. C. (2016). Loss of soil (macro) fauna due to the expansion of Brazilian sugar cane acreage. Science of the Total Environment, 563-564, 160-168. https://doi.org/10.1016/j.scitotenv.2016.04.116
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., ... Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2), 1-9. https://doi.org/10.1126/sciadv.150005
Haghighi, F., Gorji, M., & Shorafa, M. (2010). A study of the effects of land use changes on soil physical properties and organic matter. Land Degradation & Development, 21(5), 496-502. https://doi.org/10.1002/ldr.999
Helliwell, J. R., Sturrock, C. J., Grayling, K. M., Tracy, S. R., Flavel, R. J., Young, I. M., Whalley, W. R., & Mooney, S. J. (2013). Applications of X‐ray computed tomography for examining biophysical interactions and structural development in soil systems: A review. European Journal of Soil Science, 64(3), 279-297. https://doi.org/10.1111/ejss.12028
Iassonov, P., Gebrenegus, T., & Tuller, M. (2009). Segmentation of X‐ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures. Water Resources Research, 45(9), 1-12. https://doi.org/10.1029/2009WR008087
Instituto Brasileiro de Geografia e Estatística [IBGE]. (2020). Coordenação de recursos naturais e estudos ambientais, coordenação de contas nacionais. Contas de ecossistemas: o uso da terra nos biomas brasileiros: 2000-2018. IBGE.
Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuno, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13), 4972-4975. https://doi.org/10.1073/pnas.0709247105
Li, W., & Zhao, X. (2018). Multiscale horizontal-visibility-graph correlation analysis of stock time series. Europhysics Letters, 122(4), 40007. https://doi.org/10.1209/0295-5075/122/40007
Luque, B., Lacasa, L., Ballesteros, F., & Luque, J. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80(4), 046103. https://doi.org/10.1103/PhysRevE.80.046103
Martín, M. Á., Reyes, M., & Javier Taguas, F. (2017). Estimating soil bulk density with information metrics of soil texture. Geoderma, 287, 66-70. https://doi.org/10.1016/j.geoderma.2016.09.008
Ojeda-Magaña, B., Quintanilla-Domínguez, J., Ruelas, R., Tarquis, A. M., Gómez-Barba, L., & Andina, D. (2014). Identification of pore spaces in 3D CT soil images using PFCM partitional clustering. Geoderma, 217-218, 90-101. https://doi.org/10.1016/j.geoderma.2013.11.005
Ozores-Hampton, M., Stansly, P. A., & Salame, T. P. (2011). Soil chemical, physical, and biological properties of a sandy soil subjected to long-term organic amendments. Journal of Sustainable Agriculture, 35(3), 243-259. https://doi.org/10.1080/10440046.2011.554289
Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H.-J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122-137. https://doi.org/10.1016/j.geoderma.2017.11.009
Roy, A., & Perfect, E. (2014). Lacunarity analyses of multifractal and natural grayscale patterns. Fractals, 22(03), 1440003. https://doi.org/10.1142/S0218348X14400039
Samec, M., Santiago, A., Cárdenas, J. P., Benito, R. M., Tarquis, A. M., Mooney, S. J., & Korošak, D. (2013). Quantifying soil complexity using network models of soil porous structure. Nonlinear Processes in Geophysics, 20(1), 41-45. https://doi.org/10.5194/npg-20-41-2013
San José Martínez, F., Caniego, F. J., & García-Gutiérrez, C. (2017). Lacunarity of soil macropore space arrangement of CT images: Effect of soil management and depth. Geoderma, 287, 80-89. https://doi.org/10.1016/j.geoderma.2016.09.007
Schlüter, S., Großmann, C., Diel, J., Wu, G.-M., Tischer, S., Deubel, A., & Rücknagel, J. (2018). Long-term effects of conventional and reduced tillage on soil structure, soil ecological and soil hydraulic properties. Geoderma, 332, 10-19. https://doi.org/10.1016/j.geoderma.2018.07.001
Soto-Gomez, D., Perez-Rodriguez, P., Juiz, L. V., Paradelo, M., & Lopez-Periago, J. E. (2020). 3D multifractal characterization of computed tomography images of soils under different tillage management: Linking multifractal parameters to physical properties. Geoderma, 363, 114129. https://doi.org/10.1016/j.geoderma.2019.114129
Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1(3), 1-19. https://doi.org/10.1186/1753-4631-1-3
Supriya, S., Siuly, S., Wang, H., Cao, J., & Zhang, Y. (2016). Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access, 4, 6554-6566. https://doi.org/10.1109/ACESSO.2016.2612242
Taina, I. A., Heck, R. J., & Elliot, T. R. (2008). Application of X-ray computed tomography to soil science: A literature review. Canadian Journal of Soil Science, 88(1), 1-20. https://doi.org/10.4141/CJSS06027
Tarquis, A. M., Heck, R. J., Andina, D., Alvarez, A., & Antón, J. M. (2009). Pore network complexity and thresholding of 3D soil images. Ecological Complexity, 6(3), 230-239. https://doi.org/10.1016/j.ecocom.2009.05.010
Torre, I. G., Losada, J. C., & Tarquis, A. M. (2018). Multiscaling properties of soil images. Biosystems Engineering, 168, 133-141. https://doi.org/10.1016/j.biosystemseng.2016.11.006
Usharani, K. V., Roopashree, K. M., & Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. Journal of Pharmacognosy and Phytochemistry, 8(5), 1256-1267. https://doi.org/10.22271/phyto
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. https://doi.org/10.1038/30918
Wang, M., Vilela, A. L. M., Du, R., Zhao, L., Dong, G., Tian, L., & Stanley, H. E. (2018). Topological properties of the limited penetrable horizontal visibility graph family. Physical Review E, 97(5), 052117. https://doi.org/10.1103/PhysRevE.97.052117
Williams, H., Colombi, T., & Keller, T. (2020). The influence of soil management on soil health: An on-farm study in southern Sweden. Geoderma, 360, 1-9. https://doi.org/10.1016/j.geoderma.2019.114010
Yu, L. (2013). Visibility graph network analysis of gold price time series. Physica A: Statistical Mechanics and its Applications, 392(16), 3374-3384. https://doi.org/10.1016/j.physa.2013.03.063
Zhang, Z., Wang, J., & Li, B. (2019). Determining the influence factors of soil organic carbon stock in opencast coal-mine dumps based on complex network theory. Catena, 173, 433-444. https://doi.org/10.1016/j.catena.2018.10.030
Zhou, H., Perfect, E., Lu, Y. Z., Li, B. G., & Peng, X. H. (2011). Multifractal analyses of grayscale and binary soil thin section images. Fractals, 19(03), 299-309. https://doi.org/10.1142/S0218348X11005403
Zou, Y., Donner, R. V., Marwan, N., Donges, J. F., & Kurths, J. (2019). Complex network approaches to nonlinear time series analysis. Physics Reports, 787, 1-97. https://doi.org/10.1016/j.physrep.2018.10.005
Copyright (c) 2025 Nicéias Silva Vilela, José Domingos Albuquerque Aguiar, Tatijana Stosic, Rômulo Simões Cezar Menezes, Antonio Celso Dantas Antonino, Borko Stosic (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.